分布式搜索引擎ElasticSearch——基础

分布式搜索引擎ElasticSearch——基础

文章目录

  • 分布式搜索引擎ElasticSearch——基础
    • 初识elasticsearch
      • 什么是elasticsearch
      • elasticsearch的发展
      • 正向索引和倒排索引
      • 安装elasticsearch,kibana
        • 部署单点es
          • 创建网络
          • 加载镜像
          • 运行
        • 部署kibana
          • 部署
          • DevTools
      • 安装IK分词器
        • 在线安装ik插件(较慢)
        • 离线安装ik插件(推荐)
          • 1)查看数据卷目录
          • 4)重启容器
          • 5)测试:
        • 扩展词词典
        • 停用词词典
      • 部署es集群
    • 索引库操作
      • mapping属性
      • 创建索引库
      • 查询,删除索引库
      • 修改索引库——添加字段
    • 文档操作
      • 添加文档
      • 查看、删除文档
      • 修改文档
      • 文档操作——动态映射
    • RestClient操作索引库
    • RestClient操作文档
      • 利用JavaRestClient批量导入酒店数据到ES

分布式搜索引擎ElasticSearch——基础_第1张图片

初识elasticsearch

分布式搜索引擎ElasticSearch——基础_第2张图片

什么是elasticsearch

分布式搜索引擎ElasticSearch——基础_第3张图片
分布式搜索引擎ElasticSearch——基础_第4张图片
分布式搜索引擎ElasticSearch——基础_第5张图片

elasticsearch的发展

分布式搜索引擎ElasticSearch——基础_第6张图片

https://lucene.apache.org/
分布式搜索引擎ElasticSearch——基础_第7张图片
https://www.elastic.co/cn/
分布式搜索引擎ElasticSearch——基础_第8张图片
分布式搜索引擎ElasticSearch——基础_第9张图片

正向索引和倒排索引

分布式搜索引擎ElasticSearch——基础_第10张图片
分布式搜索引擎ElasticSearch——基础_第11张图片
分布式搜索引擎ElasticSearch——基础_第12张图片
分布式搜索引擎ElasticSearch——基础_第13张图片
分布式搜索引擎ElasticSearch——基础_第14张图片
分布式搜索引擎ElasticSearch——基础_第15张图片
分布式搜索引擎ElasticSearch——基础_第16张图片
分布式搜索引擎ElasticSearch——基础_第17张图片

分布式搜索引擎ElasticSearch——基础_第18张图片
分布式搜索引擎ElasticSearch——基础_第19张图片
分布式搜索引擎ElasticSearch——基础_第20张图片

安装elasticsearch,kibana

分布式搜索引擎ElasticSearch——基础_第21张图片
分布式搜索引擎ElasticSearch——基础_第22张图片
分布式搜索引擎ElasticSearch——基础_第23张图片
https://github.com/medcl/elasticsearch-analysis-ik

部署单点es
创建网络

因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络:

docker network create es-net
加载镜像

这里我们采用elasticsearch的7.12.1版本的镜像,这个镜像体积非常大,接近1G。不建议大家自己pull。网速没问题的话,直接去pull也没问题只要记得指定版本为7.12.1即可(学习教学方便)

课前资料提供了镜像的tar包:

分布式搜索引擎ElasticSearch——基础_第24张图片
大家将其上传到虚拟机中,然后运行命令加载即可:

# 导入数据
docker load -i es.tar

同理还有kibana的tar包也需要这样做。同理kibana也可以直接去pull

运行

运行docker命令,部署单点es:

docker run -d \
	--name es \
    -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \
    -e "discovery.type=single-node" \
    -v es-data:/usr/share/elasticsearch/data \
    -v es-plugins:/usr/share/elasticsearch/plugins \
    --privileged \
    --network es-net \
    -p 9200:9200 \
    -p 9300:9300 \
elasticsearch:7.12.1

命令解释:

  • -e "cluster.name=es-docker-cluster":设置集群名称
  • -e "http.host=0.0.0.0":监听的地址,可以外网访问
  • -e "ES_JAVA_OPTS=-Xms512m -Xmx512m":内存大小
  • -e "discovery.type=single-node":非集群模式
  • -v es-data:/usr/share/elasticsearch/data:挂载逻辑卷,绑定es的数据目录
  • -v es-logs:/usr/share/elasticsearch/logs:挂载逻辑卷,绑定es的日志目录
  • -v es-plugins:/usr/share/elasticsearch/plugins:挂载逻辑卷,绑定es的插件目录
  • --privileged:授予逻辑卷访问权
  • --network es-net :加入一个名为es-net的网络中
  • -p 9200:9200:端口映射配置

在浏览器中输入:http://192.168.150.101:9200 即可看到elasticsearch的响应结果:

分布式搜索引擎ElasticSearch——基础_第25张图片

部署kibana

kibana可以给我们提供一个elasticsearch的可视化界面,便于我们学习。

部署

运行docker命令,部署kibana

docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=es-net \
-p 5601:5601  \
kibana:7.12.1
  • --network es-net :加入一个名为es-net的网络中,与elasticsearch在同一个网络中
  • -e ELASTICSEARCH_HOSTS=http://es:9200":设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名直接访问elasticsearch
  • -p 5601:5601:端口映射配置

kibana启动一般比较慢,需要多等待一会,可以通过命令:

docker logs -f kibana

查看运行日志,当查看到下面的日志,说明成功:

分布式搜索引擎ElasticSearch——基础_第26张图片

此时,在浏览器输入地址访问:http://192.168.150.101:5601,即可看到结果

DevTools

kibana中提供了一个DevTools界面:
分布式搜索引擎ElasticSearch——基础_第27张图片

安装IK分词器

在线安装ik插件(较慢)
# 进入容器内部
docker exec -it es /bin/bash

# 在线下载并安装
./bin/elasticsearch-plugin  install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip

#退出
exit
#重启容器
docker restart elasticsearch
离线安装ik插件(推荐)
1)查看数据卷目录

安装插件需要知道elasticsearch的plugins目录位置,而我们用了数据卷挂载,因此需要查看elasticsearch的数据卷目录,通过下面命令查看:

docker volume inspect es-plugins

显示结果:

[
    {
        "CreatedAt": "2022-05-06T10:06:34+08:00",
        "Driver": "local",
        "Labels": null,
        "Mountpoint": "/var/lib/docker/volumes/es-plugins/_data",
        "Name": "es-plugins",
        "Options": null,
        "Scope": "local"
    }
]

说明plugins目录被挂载到了:/var/lib/docker/volumes/es-plugins/_data 这个目录中。

分布式搜索引擎ElasticSearch——基础_第28张图片

也就是/var/lib/docker/volumes/es-plugins/_data
在这里插入图片描述

4)重启容器
# 4、重启容器
docker restart es
# 查看es日志
docker logs -f es
5)测试:

IK分词器包含两种模式:

  • ik_smart:最少切分

  • ik_max_word:最细切分

GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "黑马程序员学习java太棒了"
}

结果:

{
  "tokens" : [
    {
      "token" : "黑马",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "程序员",
      "start_offset" : 2,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 1
    },
    {
      "token" : "程序",
      "start_offset" : 2,
      "end_offset" : 4,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
      "token" : "员",
      "start_offset" : 4,
      "end_offset" : 5,
      "type" : "CN_CHAR",
      "position" : 3
    },
    {
      "token" : "学习",
      "start_offset" : 5,
      "end_offset" : 7,
      "type" : "CN_WORD",
      "position" : 4
    },
    {
      "token" : "java",
      "start_offset" : 7,
      "end_offset" : 11,
      "type" : "ENGLISH",
      "position" : 5
    },
    {
      "token" : "太棒了",
      "start_offset" : 11,
      "end_offset" : 14,
      "type" : "CN_WORD",
      "position" : 6
    },
    {
      "token" : "太棒",
      "start_offset" : 11,
      "end_offset" : 13,
      "type" : "CN_WORD",
      "position" : 7
    },
    {
      "token" : "了",
      "start_offset" : 13,
      "end_offset" : 14,
      "type" : "CN_CHAR",
      "position" : 8
    }
  ]
}
扩展词词典

随着互联网的发展,“造词运动”也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。比如:“奥力给”,“传智播客” 等。

所以我们的词汇也需要不断的更新,IK分词器提供了扩展词汇的功能。

1)打开IK分词器config目录:
分布式搜索引擎ElasticSearch——基础_第29张图片

2)在IKAnalyzer.cfg.xml配置文件内容添加:


DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置comment>
        
        <entry key="ext_dict">ext.dicentry>
properties>

3)新建一个 ext.dic,可以参考config目录下复制一个配置文件进行修改

传智播客
奥力给

4)重启elasticsearch

docker restart es

# 查看 日志
docker logs -f elasticsearch

分布式搜索引擎ElasticSearch——基础_第30张图片

日志中已经成功加载ext.dic配置文件

5)测试效果:

GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "传智播客Java就业超过90%,奥力给!"
}

注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑

停用词词典

在互联网项目中,在网络间传输的速度很快,所以很多语言是不允许在网络上传递的,如:关于宗教、政治等敏感词语,那么我们在搜索时也应该忽略当前词汇。

IK分词器也提供了强大的停用词功能,让我们在索引时就直接忽略当前的停用词汇表中的内容。

1)IKAnalyzer.cfg.xml配置文件内容添加:


DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置comment>
        
        <entry key="ext_dict">ext.dicentry>
         
        <entry key="ext_stopwords">stopword.dicentry>
properties>

3)在 stopword.dic 添加停用词

停用词

4)重启elasticsearch

# 重启服务
docker restart elasticsearch
docker restart kibana

# 查看 日志
docker logs -f elasticsearch

日志中已经成功加载stopword.dic配置文件

5)测试效果:

GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "传智播客Java就业率超过95%,停用词都点赞,奥力给!"
}

注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑

部署es集群

部署es集群可以直接使用docker-compose来完成,不过要求你的Linux虚拟机至少有4G的内存空间

首先编写一个docker-compose文件,内容如下:

version: '2.2'
services:
  es01:
    image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1
    container_name: es01
    environment:
      - node.name=es01
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es02,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - data01:/usr/share/elasticsearch/data
    ports:
      - 9200:9200
    networks:
      - elastic
  es02:
    image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1
    container_name: es02
    environment:
      - node.name=es02
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - data02:/usr/share/elasticsearch/data
    networks:
      - elastic
  es03:
    image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1
    container_name: es03
    environment:
      - node.name=es03
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es02
      - cluster.initial_master_nodes=es01,es02,es03
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - data03:/usr/share/elasticsearch/data
    networks:
      - elastic

volumes:
  data01:
    driver: local
  data02:
    driver: local
  data03:
    driver: local

networks:
  elastic:
    driver: bridge

Run docker-compose to bring up the cluster:

docker-compose up

分布式搜索引擎ElasticSearch——基础_第31张图片
分布式搜索引擎ElasticSearch——基础_第32张图片

分布式搜索引擎ElasticSearch——基础_第33张图片

索引库操作

分布式搜索引擎ElasticSearch——基础_第34张图片

mapping属性

在这里插入图片描述
分布式搜索引擎ElasticSearch——基础_第35张图片

创建索引库

分布式搜索引擎ElasticSearch——基础_第36张图片

查询,删除索引库

分布式搜索引擎ElasticSearch——基础_第37张图片

修改索引库——添加字段

分布式搜索引擎ElasticSearch——基础_第38张图片

分布式搜索引擎ElasticSearch——基础_第39张图片

文档操作

分布式搜索引擎ElasticSearch——基础_第40张图片

添加文档

分布式搜索引擎ElasticSearch——基础_第41张图片

查看、删除文档

分布式搜索引擎ElasticSearch——基础_第42张图片

修改文档

全量修改如果传的id不存在,就直接成为新增了。
增量修改就是局部修改。
分布式搜索引擎ElasticSearch——基础_第43张图片

分布式搜索引擎ElasticSearch——基础_第44张图片

文档操作——动态映射

分布式搜索引擎ElasticSearch——基础_第45张图片
分布式搜索引擎ElasticSearch——基础_第46张图片
分布式搜索引擎ElasticSearch——基础_第47张图片
分布式搜索引擎ElasticSearch——基础_第48张图片

RestClient操作索引库

分布式搜索引擎ElasticSearch——基础_第49张图片
https://www.elastic.co/guide/en/elasticsearch/client/index.html

在这里插入图片描述
分布式搜索引擎ElasticSearch——基础_第50张图片
分布式搜索引擎ElasticSearch——基础_第51张图片
分布式搜索引擎ElasticSearch——基础_第52张图片
分布式搜索引擎ElasticSearch——基础_第53张图片
分布式搜索引擎ElasticSearch——基础_第54张图片

分布式搜索引擎ElasticSearch——基础_第55张图片

public class HotelIndexTest {
    private RestHighLevelClient client;

    @Test
    void testInit(){
        System.out.println(client);
    }

//    创建索引库
    @Test
    void createHotelIndex() throws IOException {
        // 1. 创建request对象
        CreateIndexRequest request = new CreateIndexRequest("hotel");
        // 2. 准备请求的参数:DSL语句
        request.source(MAPPING_TEMPLATE, XContentType.JSON);
        // 3. 发送请求
        client.indices().create(request, RequestOptions.DEFAULT);
    }

//    删除索引库
    @Test
    void testDDeleteHotelIndex() throws IOException {
        // 1. 创建Request对象
        DeleteIndexRequest request = new DeleteIndexRequest("hotel");
        // 2. 发送请求
        client.indices().delete(request,RequestOptions.DEFAULT);
    }


//    判断是否存在索引库
    @Test
    void testExistsHotelIndex() throws IOException {
        // 1. 创建Request对象
        GetIndexRequest request = new GetIndexRequest("hotel");
        // 2. 发送请求
        boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);
        // 3. 输出
        System.out.println(exists ? "索引库已经存在": "索引库不存在!");
    }



    @BeforeEach
    void setUp(){
        this.client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://192.168.10.88:9200")
        ));
    }

    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }
}

public class HotelConstants {
    public static final String MAPPING_TEMPLATE = "{\n" +
            "  \"mappings\": {\n" +
            "    \"properties\": {\n" +
            "      \"id\": {\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"name\": {\n" +
            "        \"type\": \"text\",\n" +
            "        \"analyzer\": \"ik_max_word\",\n" +
            "        \"copy_to\": \"{all}\"\n" +
            "      },\n" +
            "      \"address\": {\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"index\": false\n" +
            "      },\n" +
            "      \"price\": {\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"score\": {\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"brand\": {\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"copy_to\": \"{all}\"\n" +
            "      },\n" +
            "      \"city\": {\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"starName\": {\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"business\": {\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"copy_to\": \"{all}\"\n" +
            "      },\n" +
            "      \"location\": {\n" +
            "        \"type\": \"geo_point\"\n" +
            "      },\n" +
            "      \"pic\": {\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"index\": false\n" +
            "      },\n" +
            "      \"all\": {\n" +
            "        \"type\": \"text\",\n" +
            "        \"analyzer\": \"ik_max_word\"\n" +
            "      }\n" +
            "    }\n" +
            "    \n" +
            "  }\n" +
            "}";
}

分布式搜索引擎ElasticSearch——基础_第56张图片

RestClient操作文档

分布式搜索引擎ElasticSearch——基础_第57张图片
分布式搜索引擎ElasticSearch——基础_第58张图片
分布式搜索引擎ElasticSearch——基础_第59张图片
分布式搜索引擎ElasticSearch——基础_第60张图片
分布式搜索引擎ElasticSearch——基础_第61张图片
分布式搜索引擎ElasticSearch——基础_第62张图片
分布式搜索引擎ElasticSearch——基础_第63张图片分布式搜索引擎ElasticSearch——基础_第64张图片

@SpringBootTest
public class HotelDocumentTest {
    private RestHighLevelClient client;

    @Autowired
    private IHotelService hotelService;
//    添加酒店数据到索引库
    @Test
    void testAddDocument() throws IOException {
        // 根据id查询酒店数据
        Hotel hotel = hotelService.getById(61083L);
        // 转换为文档类型
        HotelDoc hotelDoc = new HotelDoc(hotel);
        // 1. 准备Request对象
        IndexRequest request = new IndexRequest("hotel").id(hotel.getId().toString());

        // 2. 准备json文档
        request.source(JSON.toJSONString(hotelDoc),XContentType.JSON);
        // 3. 发送文档
        client.index(request,RequestOptions.DEFAULT);
    }

    // 根据id查询酒店数据
    @Test
    void testGetDocumentById() throws IOException {
        // 1. 准备Request
        GetRequest request = new GetRequest("hotel", "61083");
        // 2. 发送请求,得到响应
        GetResponse response = client.get(request, RequestOptions.DEFAULT);
        // 3. 解析响应结果
        String json = response.getSourceAsString();
        HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
        System.out.println(hotelDoc);
    }

    // 根据id修改酒店数据
    @Test
    void testUpdateDocument() throws IOException {
        // 1. 准备request
        UpdateRequest request = new UpdateRequest("hotel", "61083");
        // 2. 准备请求参数
        request.doc(
                "price", "998",
                "starName", "四钻"
        );
        // 3. 发送请求
        client.update(request, RequestOptions.DEFAULT);
    }

    // 根据id删除文档数据
    @Test
    void testDeleteDocument() throws IOException {
        // 1. 准备request
        DeleteRequest request = new DeleteRequest("hotel", "61083");
        // 2. 发送请求
        client.delete(request, RequestOptions.DEFAULT);
    }



    @BeforeEach
    void setUp(){
        this.client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://192.168.10.88:9200")
        ));
    }

    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }
}

分布式搜索引擎ElasticSearch——基础_第65张图片

利用JavaRestClient批量导入酒店数据到ES

分布式搜索引擎ElasticSearch——基础_第66张图片

    // 批量添加
    @Test
    void testBulkRequest() throws IOException {
        // 批量查询酒店数据
        List<Hotel> hotels = hotelService.list();
        // 1. 创建Request
        BulkRequest request = new BulkRequest();
        // 2.  转杯参数,添加多个新增的Request
        for (Hotel hotel : hotels) {
            // 转换为文档类型HotelDoc
            HotelDoc hotelDoc = new HotelDoc(hotel);
            request.add(new IndexRequest("hotel")
                    .id(hotelDoc.getId().toString())
                    .source(JSON.toJSONString(hotelDoc),XContentType.JSON));
        }
        // 3. 发送请求
        client.bulk(request,  RequestOptions.DEFAULT);
    }

你可能感兴趣的:(搜索引擎,分布式,elasticsearch)