原理参考:https://zhuanlan.zhihu.com/p/77750026
SMO算法python代码
公式参考统计学习方法第7章
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import math
def create_data():
iris = load_iris()
df=pd.DataFrame(iris.data,columns=iris.feature_names)
df['label']=iris.target
df.columns=['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
data=np.array(df.iloc[:100,[0,1,-1]])
for i in range(len(data)):
if data[i,-1]==0:
data[i,-1]=-1
return data[:,:2], data[:,-1]
X,y=create_data()
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2)
# SMO算法
class SVM:
# 定义最大迭代次数,核函数
def __init__(self, max_iter, kernel='linear'):
self.max_iter = max_iter
self._kernel = kernel
# m样本量,n维度,X样本, Y样本类别,b,alpha拉格朗日乘子,E,C
def init_args(self, features, labels):
self.m, self.n = features.shape
self.X = features
self.Y = labels
self.b = 0.0
self.alpha = np.ones(self.m)
# Ei是g(x)预测值-实际值,保存至列表
self.E = [self._E(i) for i in range(self.m)]
# 惩罚参数
self.C=1.0
# 核函数
def kernel(self,x1,x2):
if self._kernel=='linear': #线性分类器 k(x,y)=x*y
return sum([x1[k]*x2[k] for k in range(self.n)])
elif self._kernel=='poly':
return (sum([x1[k]*x2[k] for k in range(self.n)])+1)**2 #d阶多项式分类器 k(x,y)={(x*y)+1}d
return 0
def _KKT(self, i): #p147 7.111~7.113
y_g = self._g(i)*self.Y[i]
if self.alpha[i]==0:
return y_g >=1
elif 0= 0:
j = min(range(self.m), key=lambda x: self.E[x])
else:
j = max(range(self.m), key=lambda x: self.E[x])
return i, j
def _compare(self,_alpha, L, H): #7.108
if _alpha > H:
return H
elif _alpha 0 else -1
def score(self, X_test, y_test):
right_count = 0
for i in range(len(X_test)):
result = self.predict(X_test[i])
if result == y_test[i]:
right_count += 1
return right_count / len(X_test)
svm = SVM(max_iter=200,kernel='poly')
svm.fit(X_train, y_train)
svm.score(X_test, y_test)
直接调用sklearn函数
from sklearn.svm import SVC
clf = SVC()
clf.fit(X_train, y_train)
clf.score(X_test, y_test)