- 【力扣—剑指 Offer(第 2 版)简单题目解析汇总】
Wupke
剑指offer数据结构与算法学习LeetCodeleetcode剑指offer数据结构与算法
【力扣—剑指Offer(第2版)简单题目解析汇总】说明1、基本字符串数组数组-排序矩阵/模拟枚举2、算法动态规划深度优先搜索广度优先搜索递归分治记忆化搜索快速选择二分查找3、基础数据结构树(二叉树)二叉搜索树栈队列堆(优先队列)哈希表链表4、技巧性题目双指针位运算计数设计说明简单题目共计38道,按照标签分类为:基本、算法、基础数据结构、技巧等,具体如下。1、基本字符串剑指Offer05.替换空格.
- 【GitHub开源项目实战】高频交易系统实战解析:基于 Nautilus Trader 的策略回测与事件驱动架构优化
观熵
GitHub开源项目实战github开源架构
高频交易系统实战解析:基于NautilusTrader的策略回测与事件驱动架构优化关键词:高频交易、事件驱动架构、NautilusTrader、量化回测、算法交易、PythonCython、交易引擎、回测系统、交易策略框架、实战优化摘要:本篇博客围绕GitHub上高质量的开源项目nautechsystems/nautilus_trader展开系统性实战解析。NautilusTrader是一套为专业
- 【点云压缩】Haar小波变换与RAHT自适应区域层级变换
丶契阔
算法
Haar小波小波变换由一堆小波基和其系数组成,小波基又分为母小波(低频的)和父小波(高频的)。常用于二维图形处理的小波变换是Haar小波变换,Haar小波变换具有压缩比、抗干扰、速度快的特点,经过小波变换后的系数数据会变得具有规律性,方便后续处理算法进行压缩,同时一些值较小的分量置0不影响图片整体观感。截取了PCL-AVS-PCC一段小波变换点云压缩的代码voidWaveletCoreTransf
- 从零开始大模型开发与微调:PyTorch中的卷积函数实现详解
AI天才研究院
AI人工智能与大数据AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:PyTorch中的卷积函数实现详解1.背景介绍1.1大模型开发的意义1.2卷积神经网络在大模型中的应用1.3PyTorch框架简介2.核心概念与联系2.1卷积的数学定义2.2卷积神经网络的组成2.2.1卷积层2.2.2池化层2.2.3全连接层2.3卷积与大模型的关系3.核心算法原理具体操作步骤3.1卷积的前向传播3.2卷积的反向传播3.3卷积的优化策略3.3.1卷积核大小
- C++(20/23)标准模板库编程 - 1 C++ 回顾
akluse
C++c++开发语言
引言现代C++编程最引人注目的特点或许并非其语言本身的表达性语法与语义,而是标准模板库(STL)。STL是一个包含多功能模板类与算法的庞大集合。若运用得当,STL能显著简化和提升高性能优质软件的开发流程。然而对于许多C++程序员——无论是初学者还是资深开发者——要掌握如何有效运用STL的编程结构往往令人望而生畏。《实用C++STL编程》作为指导性教材,将教会您如何成功应用STL的类、算法及其他编程
- 插入排序解析
老一岁
算法数据结构排序算法
可以将插入排序类比为整理扑克牌的过程:左手持已排序的牌(初始为空)右手从桌上未排序的牌堆中逐张取牌将取到的牌插入左手正确位置最终左手持完全有序的牌前言一、算法工作原理插入排序是一种基于比较的简单排序算法,其核心思想是逐步构建有序序列。算法将待排序数组视为两个部分:已排序部分(初始时仅包含第一个元素)和未排序部分。通过不断从未排序部分取出元素,在已排序部分中找到适当位置插入,最终完成整个数组的排序。
- 深度剖析数据中台:大数据领域的核心技术架构
大数据洞察
大数据架构javaai
深度剖析数据中台:大数据领域的核心技术架构关键词:数据中台、大数据、核心技术架构、数据治理、数据服务摘要:本文旨在对数据中台这一大数据领域的核心技术架构进行深度剖析。首先介绍了数据中台的背景,包括其目的、适用读者、文档结构和相关术语。接着阐述了数据中台的核心概念、原理和架构,通过文本示意图和Mermaid流程图进行直观展示。详细讲解了核心算法原理及具体操作步骤,并结合Python源代码进行说明。引
- 运筹系列91:vrp算法包PyVRP
IE06
运筹学人工智能
1.介绍PyVRP使用HGS(hybridgeneticsearch)算法求解VRP类问题。在benchmark上的评测结果如下,看起来还不错:2.使用例子2.1CVRPCOORDS=[(456,320),#location0-thedepot(228,0),#location1(912,0),#location2(0,80),#location3(114,80),#location4(570,1
- 设计哈希集合【set】【拉链法】【位运算法】【定长拉链法】 - 哈希表本质深度解析
weixin_47868976
哈希算法散列表算法
LeetCode705设计哈希集合-哈希表本质深度解析题目描述设计一个哈希集合(HashSet),不使用任何内建的哈希表库,实现以下操作:add(key):向哈希集合中插入值keyremove(key):将给定值key从哈希集合中删除contains(key):返回哈希集合中是否存在这个值key数据范围:0data;public:MyHashSet(){//10^6+1大小的数组,key直接作为索
- 堆排序实现及复杂度分析
hixiaoyang
算法排序算法数据结构
一、算法概述堆排序(HeapSort)是一种基于二叉堆数据结构的比较排序算法。它利用了堆这种数据结构的特性:最大堆:每个节点的值都大于或等于其子节点的值最小堆:每个节点的值都小于或等于其子节点的值堆排序是不稳定排序算法,时间复杂度为O(nlogn),空间复杂度为O(1)二、算法步骤1.构建初始堆将无序数组构建成一个最大堆(升序排序时)2.交换与调整将堆顶元素(最大值)与末尾元素交换缩小堆的范围,重
- Web3.0 技术应用溯源系统建设
天机️灵韵
区块链区块链web3.0
Web3.0技术与溯源(TrackandTrace)的结合,是区块链等去中心化技术在实际应用中的典型场景之一。通过Web3.0的底层技术,可以构建透明、不可篡改且可验证的溯源系统,解决传统供应链、商品流通等领域的数据信任问题。以下是两者的深度关联与具体应用:一、Web3.0如何赋能溯源?区块链的不可篡改性核心机制:区块链通过哈希链、共识算法(如PoW/PoS)确保数据一旦上链,无法被单一方修改或删
- AI原生应用监控:实时领域偏见预警系统设计原理
Agentic AI人工智能与大数据
CSDNAI-native人工智能ai
AI原生应用监控:实时领域偏见预警系统设计原理关键词AI监控、算法偏见、实时预警、公平性AI、模型监控、偏见检测、AI治理摘要在人工智能驱动决策日益普及的今天,AI系统中的隐性偏见已成为影响公平性、可信度和业务连续性的关键风险。本文深入探讨了AI原生应用监控的核心挑战,重点剖析了实时领域偏见预警系统的设计原理与实现方法。通过将复杂的算法偏见比作"数字世界的隐形滤镜",我们揭示了偏见如何在AI系统中
- 【加密】对称加密DES和非对称加密AES、数字签名
bdview
算法区块链密码学openssljava
目录对称加密1.1定义1.2优缺点1.3常用对称加密算法非对称加密(AsymmetricCryptography)非对称加密(现代加密算法)2.1定义数字签名非常好的文章:《三分钟了解对称加密和非对称加密是如何工作的》https://zhuanlan.zhihu.com/p/108627377主要加密算法有哪些:https://blog.csdn.net/baidu_22254181/articl
- 【数据结构与算法】单向链表(添加节点、顺序添加节点、更新节点、删除节点、反转链表、获取链表长度、获取倒数第几个节点、打印链表、反转打印链表)
目录1.单向链表的介绍2.带head头的单向链表实现1.单向链表的介绍单向链表是有序的列表。以节点的方式来存储,是链式存储,每个节点包含data域和next域(指向下一个节点),所以单向链表在内存中的储存是无序的单向链表分带头节点的单向链表,和没有头节点的单向链表2.带head头的单向链表实现实现对单向链表的增、删、改、查等操作单向链表各节点说明:head节点:不储存数据,next指向下一个节点最
- 招聘 | 美团 AI 搜索:致力用 AI 技术创造极致的搜索和交互体验
美团技术团队
人工智能大数据
敢用算法定义下一代搜索体验吗?我们正在寻找「AI狂热分子」——能让搜索结果秒懂用户灵魂需求的算法魔法师、精准雕琢搜索体验的算法工程技术革新者敢用大模型重构搜索逻辑的技术造浪者、深耕算法工程实践的大模型架构驾驭者愿用数据和代码解锁智能边界的未来架构师、用工程代码与数据打破技术边界的技术领航人和我们一起,可以做些什么?AI搜索团队致力于打造以智能搜索为核心的新型产品,以满足用户需求为目标,专注于为用户
- 行为正则化与顺序策略优化结合的离线多智能体学习算法
离线多智能体强化学习(MARL)是一个新兴领域,目标是在从预先收集的数据集中学习最佳的多智能体策略。随着人工智能技术的发展,多智能体系统在诸如自动驾驶、智能家居、机器人协作以及智能调度决策等方面展现了巨大的应用潜力。但现有的离线MARL方法也面临很多挑战,仍存在不协调行为和分布外联合动作的问题。为了应对这些挑战,中山大学计算机学院、美团履约平台技术部开展了学术合作项目,并取得了一些的成果,希望分享
- 在单向链表中插入节点——C语言基础
FifthDesign
链表单链表数据结构算法C语言
向单向链表插入节点前言:链表的插入过程就是把新建的节点插入到已有的链表中,鉴于此种理解,也可以把链表的创建看做是一种特殊的插入节点过程,但是具体来说,链表的插入较于链表的创建来说稍复杂一些。文章目录向单向链表插入节点一、问题描述二、算法描述三、代码部分1.structure.h2.insert.h四、代码解析1.对于单向链表来说,插入为什么需要引入两个工具指针?2.指针变量的初始化![在这里插入图
- 【机器学习第四期(Python)】LightGBM 方法原理详解
WW、forever
机器学习原理及代码实现机器学习python人工智能
LightGBM概述一、LightGBM简介二、LightGBM原理详解⚙️核心原理LightGBM的主要特点三、LightGBM实现步骤(Python)可调参数推荐完整案例代码(回归任务+可视化)参考LightGBM是由微软开源的基于梯度提升框架(GBDT)的机器学习算法,专为高性能、高效率设计,适用于大规模数据处理任务。它在准确率、训练速度和资源使用上都优于传统GBDT实现(如XGBoost)
- 【机器学习】机器学习的基本分类-监督学习-线性回归(Linear Regression)
IT古董
人工智能机器学习机器学习分类学习人工智能线性回归
线性回归是监督学习中的一种基础算法,用于解决回归问题。它通过拟合一条直线(或平面、高维超平面),来预测输出与输入变量之间的关系。1.线性回归的基本概念目标给定输入和对应的输出y,找到一个线性函数:其中:是权重(回归系数)。b是偏置(截距)。y是预测值。损失函数为了找到最佳的w和b,需要最小化预测值和真实值
- 深入了解Stable Diffusion:解锁AI图像生成的神秘密码 ?????
DTcode7
AI生产力AIAIGCstablediffusionAI生产力前沿
深入了解StableDiffusion:解锁AI图像生成的神秘密码?????StableDiffusion:AI的像素炼金术士基础概念:从扩散到聚焦的魔法技术深潜:核心机制解析反向扩散算法代码实验室:动手实践StableDiffusion的魔法示例一:一句话,一个世界示例二:风格迁移的艺术实战技巧与最佳实践实际挑战与解决方案结语:艺术与科技的无限对话在这个数字洪流涌动的时代,AI图像生成技术正以前
- D-FINE模型详解及代码复现
清风AI
目标跟踪人工智能计算机视觉深度学习机器学习python神经网络
研究背景在实时目标检测领域的快速发展背景下,D-FINE作为一项突破性的方法应运而生。它超越了现有模型如YOLOv10、YOLO11及RT-DETRv1/v2/v3,重新定义了边界框回归任务,显著提升了实时目标检测的性能上限。D-FINE通过创新的细粒度分布优化(FDR)和全局最优定位自蒸馏(GO-LSD)机制,为目标检测领域带来了新的突破,为未来的研究奠定了基础。创新优势D-FINE模型在创新方
- g711a音频编码记录
写了个安卓wavpcmhttp直播流的程序。客户端采用sdl2直接播放pcm.工作的很好,但是,非常耗费带宽差不多100kb/s的网速。非常不利于外网的音频传输。尝试用zlib压缩,效果不尽理想。只压缩成90%。节约了1/10带宽遂放弃。尝试了安卓端mp3直播,效果不错,差不多带宽30kb/s。但是mp3有个很大的问题,就是延迟增大了几秒。研究了下wav压缩音频格式,发觉还有g711a,这个算法比
- MCP模型上下文协议:AI人工智能模型训练的自动化调参
AI天才研究院
AI人工智能与大数据人工智能自动化运维ai
MCP模型上下文协议:AI人工智能模型训练的自动化调参关键词:MCP模型、自动化调参、AI训练、超参数优化、上下文协议、机器学习、深度学习摘要:本文深入探讨MCP模型上下文协议在AI模型训练自动化调参中的应用。MCP(ModelContextProtocol)是一种创新的自动化调参框架,通过上下文感知和动态参数调整机制,显著提升模型训练效率和性能。文章将从理论基础、算法实现、数学原理到实际应用进行
- AI--提升效率、驱动创新的核心引擎
保持学习ing
AI编程自动化低代码
自动化代码生成、低代码/无代码开发、算法优化实践等新兴技术在软件开发领域正逐渐崭露头角。这些技术为开发者提供了更高效、更便捷的开发方式,大大提升了软件开发的效率和质量。本文重点探讨的是这些技术在实际应用中的价值和优势。1、自动化代码生成1.1优势自动化代码生成是利用机器学习和人工智能技术,通过分析需求和已有代码,生成可用的代码片段或完整的程序。这种技术可以极大地减少开发人员的工作量,提高开发效率。
- (全网最全,打光测试解决高反光产品)在机器视觉2D中,遇到高反光产品打光测试怎么办?
苏州大视通机器视觉
杂说科技人工智能计算机视觉opencv
关键原则:优先从物理层面消除反光(光源/光学),算法作为补充。偏振方案成本通常低于更换光源,且效果显著,建议优先尝试。在机器视觉打光测试中出现反光问题会严重影响图像质量,导致特征模糊、边缘丢失或检测失败。以下是系统性的解决方案,可根据实际情况组合应用:一、调整光源方案改变光源角度斜射照明:避免光源直射反光区域(如30°-60°环光、条形光侧打)。同轴光优化:对镜面物体改用低角度环形光(如<15°)
- 四阶数独——深度优先搜索dfs
我爱工作&工作love我
c++深度优先算法
文章目录四阶数独例题讲解深度优先dfs搜索知识点算法思想应用代码框架四阶数独例题讲解题目描述这里讨论一种简化的数独——四阶数独。给出一个4×4的格子,每个格子只能填写1到4之间的整数,要求每行、每列和四等分更小的正方形部分都刚好由1到4组成。求总共有多少种不同的数独?输出结果:288思路常规思路就是根据格子序号挨个设置数如果每次都是从第一个开始设置,暴力枚举,一个格子四种选择,16个格子所以就有4
- 数据结构——图的遍历之深度优先遍历(DFS算法)_全世界最可爱的王小帅_CSDN博客
全世界最可爱的王小帅
数据结构图论算法cppc#
数据结构——图的遍历之深度优先遍历图的遍历一般分为深度优先遍历和广度优先遍历下面我们要说的是深度优先遍历**(DFS算法)**1,我们首先选择一个顶点作为起始点,假设我们选择顶点v作为起始点,首先访问v,然后找v的邻接点,访问v的一个还未被访问过邻接点w1,2,再以w1为起始点,然后去找w1的邻接点,访问w1的一个还未被访问过的邻接点w2,再以w2作为起始点继续往下访问…3,如果我们访问到一个顶点
- 深度解析基于贝叶斯的垃圾邮件分类
大千AI助手
人工智能Python#OTHER分类数据挖掘人工智能机器学习算法贝叶斯Bayes
贝叶斯垃圾邮件分类的核心逻辑是基于贝叶斯定理,利用邮件中的特征(通常是单词)来计算该邮件属于“垃圾邮件”或“非垃圾邮件”的概率,并根据概率大小进行分类。它是一种朴素贝叶斯分类器,因其假设特征(单词)之间相互独立而得名(虽然这在现实中不完全成立,但效果通常很好)。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的
- YOLOv11革命性升级:基于MobileNetv4的UIB和ExtraDW模块重构C3k2架构,实现移动端推理性能飞跃
博导ai君
深度学习教学-附源码YOLO重构
引言与背景概述在当今人工智能飞速发展的时代,目标检测技术已成为计算机视觉领域的核心技术之一。从自动驾驶汽车到智能安防系统,从移动端AR应用到工业质检,目标检测无处不在。然而,随着应用场景的多样化,特别是移动端和边缘设备的普及,对模型的计算效率提出了更为严苛的要求。YOLO(YouOnlyLookOnce)系列算法作为目标检测领域的领军者,一直在精度与速度之间寻求最佳平衡。从YOLOv1到最新的YO
- 数据结构与算法:深度优先的实战指南
数据结构与算法:深度优先的实战指南关键词:深度优先搜索(DFS)、递归、栈、图遍历、路径查找、迷宫寻路、算法实战摘要:深度优先搜索(DFS)是计算机科学中最经典的算法之一,被广泛应用于路径查找、游戏AI、社交网络分析等场景。本文将用“迷宫探险”的故事串联核心概念,结合生活案例、代码实战和LeetCode经典题,带您从0到1掌握DFS的底层逻辑与实战技巧。即使你是算法新手,也能通过通俗易懂的讲解,真
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key