- 大语言模型(LLM)课程学习(Curriculum Learning)、数据课程(data curriculum)指南:从原理到实践
在人工智能的浪潮之巅,我们总会惊叹于GPT-4、Llama3.1、Qwen2.5这些顶尖大语言模型(LLM)所展现出的惊人能力。它们似乎无所不知,能写诗、能编程、能进行复杂的逻辑推理。一个自然而然的问题是:它们是如何“学”会这一切的?大多数人会回答:“用海量数据喂出来的。”这个答案只说对了一半。如果你认为只要把互联网上能找到的所有数据(比如15万亿个token)随机打乱,然后“一锅烩”地喂给模型,
- Halcon学习之select_shape()算子参数介绍
一、算子介绍select_shape()是HALCON中用于基于形状特征筛选区域的关键算子,广泛应用于图像分割、目标检测和工业质检等领域。它允许用户根据指定的几何特征从输入区域集合中选择符合条件的区域。至于为什么单独介绍这个算子呢,因为他筛选特征的方式有太多种了,如果可以熟练的掌握这些特征,那在后面的例程学习以及实际应用中,可谓是得心应手了。二、算子参数select_shape(Regions:S
- Halcon例程学习四:pcb_inspection.hdev
CVer_
Halcon例程学习学习
一、例程介绍这个例程主要是检测pcb电路板中的一些电路线缺陷二、例程相关算子gray_opening_shape()//特定形状结构元的灰度开运算gray_closing_shape()//特定形状结构元的灰度闭运算dyn_threshold()//动态二值化操作三、例程处理流程1.对原图像进行灰度开运算,图像先腐蚀再膨胀。经过灰度开运算后,图像整体会变暗一些,并且会将黑色区域中的白色缺陷进行填充
- 解决更新python版本后,虚拟环境不可用的问题
Superstarimage
diffusers编程pythonpython人工智能开发语言
因为安装xformers,需要额外加装triton,而triton需要的python版本(3.10)高于我当前虚拟环境的版本(3.8),因此博主手动提升了当前虚拟环境的版本:condainstallpython=3.10结果应用该虚拟环境时,始终报如下错误:(TrainControlNet)F:\XYX\Documents\SpongeCakeInverse\AITools\the3rdparty
- PPT处理控件Aspose功能演示:使用C#从PowerPoint文件中提取文本
Lee-Shyllen
Aspose文档开发文档管理asposePPT文档开发文档处理
有时需要从PowerPoint幻灯片中提取文本以执行文本分析。另一方面,可能需要提取文本并将其保存在文件或数据库中以进行进一步处理。因此,本文介绍了如何使用C#从PowerPoint演示文稿中提取文本。特别是,将学习如何从特定的幻灯片或整个演示文稿中提取文本。从PowerPoint幻灯片中提取文本从PowerPoint演示文稿中提取文本为了处理PowerPoint演示文稿,Aspose提供Aspo
- 人工智能学习资源
Hemy08
人工智能学习
无机器学习基础:https://www.coursera.org/learn/machine-learning有机器学习基础:MachineYearning深度学习入门:https://www.coursera.org/learn/neural-networks-deep-learning
- opencv初步学习——图像处理2
这一部分主要讲解如何初步地创建一个图像,以及彩色图像我们的一些基本处理方法一、创建一个灰度图像1-1、zeros()函数[NumPy库]要用到这一个函数,首先我们需要调用我们的NumPy库,这一个函数的作用是可以帮助我们生成一个元素值都是0的二维数组,如果我们把这些数据放到一张图片里面去,那么就对应着我们的一个黑色图像。当然我们也可以通过修改数组中的数字大小来改变图像的颜色(但还是灰度图像)(1)
- 【DeepSeek开源周】Day 4:DualPipe & EPLB 学习笔记
蓝海星梦
DeepSeek开源周探秘开源学习笔记人工智能云计算分布式
目录一、DualPipe&EPLB概述二、DualPipe详解1.流水线并行策略(1)F-then-B策略(2)1F1B策略2.朴素流水线并行3.GPipe微批次流水线并行4.PipeStream5.ZBPP6.DualPipe7.DualPipeV8.流水线并行方案对比三、EPLB详解1.专家并行(EP)2.EPLB冗余专家策略3.负载均衡策略(1)分层负载均衡(2)全局负载均衡(3)接口和示例
- 2025最新盘点:9款高效韦恩图工具推荐
Designseek满血版
人工智能图论
在数据分析、逻辑推理以及众多学术研究领域,韦恩图都扮演着极为关键的角色。它以直观的圆形或椭圆形重叠区域,清晰地展现出不同集合之间的关系,无论是集合间的交集、并集还是补集,都能一目了然地呈现出来。无论是学生在学习数学、逻辑学课程时梳理知识点,还是专业人士在进行市场调研、项目规划时分析数据,亦或是科研人员在撰写论文、展示研究成果时阐述理论框架,一款好用的韦恩图绘制工具都显得至关重要。今天,就让我为大家
- 基于Linux下的vscode c/c++开发环境搭建详细教程
墨小傲
linuxvscodec语言
vscode是文本编辑而非集成开发环境,需要经过配置才能在其上编译执行代码。本教程将具体详解在linux上配置VisualStudioCode使用GCCC++编译器(g++)和GDB调试器的方法(GCC是GNU编译器集合,GDB则是GNU调试器)。配置vscode后,将通过在VSCode中编译和调试一个简单的C++程序告知您具体该如何操作。一、先决条件安装VisualStudioCode.安装C+
- 量子计算+AI芯片:光子计算如何重构神经网络硬件生态
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站量子计算+AI芯片:光子计算如何重构神经网络硬件生态——2025年超异构计算架构下的万亿参数模型训练革命产业拐点:英伟达BlackwellUltra发布光互连版GPU,IBM量子处理器突破512比特,光子计算商用成本降至$5/TOPS实测突破:Llama3-405B在光子-量子混合集群训练能耗下
- 【机器学习笔记 Ⅱ】4 神经网络中的推理
推理(Inference)是神经网络在训练完成后利用学到的参数对新数据进行预测的过程。与训练阶段不同,推理阶段不计算梯度也不更新权重,仅执行前向传播。以下是其实现原理和代码示例的完整解析:1.推理的核心步骤加载训练好的模型参数(权重和偏置)。前向传播:输入数据逐层计算,得到输出。后处理:根据任务类型解析输出(如分类取概率最大值,回归直接输出)。2.代码实现(Python+NumPy)(1)定义模型
- OpenCV 人脸分析------面部关键点检测类cv::face::FacemarkLBF
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述使用LocalBinaryFeatures(LBF)算法进行面部关键点检测(faciallandmarkdetection)。该算法通过级联回归树预测人脸的68个关键点,具有较高的精度和速度。公共成员函数staticPtrcreate(constParams&pa
- 【大厂面试题】千万级大表如何快速删除大量数据
CBeann
【面试题】【架构&案例】【MySQL】java开源springjvmmysql大厂面试题
-作者简介:大厂高级Java开发工程师-称号:CSDN博客专家✨、阿里云博客专家-公众号:云服务小管家。免费的阿里云服务器☁和云环境直接使用-生活:专注于后端技术分享迷茫时可来瞅瞅码农轨迹♂️-服务:提供模拟面试和简历辅导,提供生产项目。内推可私信✉-卷卷群:可以和大家一起学习,一起进步-如果感觉博主的文章还不错的话,请三连支持一下博主哦背景最近在做一个项目,除了验证功能,还需要验证性能,所以前
- 开源语音分离工具大比拼:人声 VS 背景音乐 ⚔️ - 获取干净训练语音 (数据截至 2025年4月17日)!!!
小丁学Java
python人工智能
开源语音分离工具大比拼:人声VS背景音乐⚔️-获取干净训练语音(数据截至2025年4月17日)在音频处理,特别是机器学习训练数据的准备中,获取纯净的人声(去除背景音乐或噪声)是一个常见的痛点。幸运的是,开源社区提供了许多强大的工具来帮助我们完成这项任务!本文将盘点一系列GitHub上的开源语音分离项目,重点关注那些能有效分离“人物语音”和“背景音乐”的工具,并根据GitHub星标⭐(反映社区关注度
- AI+Web3:从自动化工具到自主经济体的范式革命
Loving_enjoy
计算机学科论文创新点迁移学习人工智能机器学习
>想象你的AI助手不仅能回答问题,还能自主管理你的加密资产、参与DAO治理、在预测市场博弈,甚至为你创造持续收益——欢迎来到AI与Web3融合的新世界。传统互联网(Web2)的AI困在中心化的牢笼中:数据被垄断在科技巨头手中,算法决策如同黑箱,用户沦为被动的数据奶牛。**Web3与AI的碰撞正在打破这一枷锁**,催生出去中心化的自主智能体(AIAgent),它们拥有数字身份、加密钱包和经济决策权,
- TensorFlow图神经网络(GNN)入门指南
AI天才研究院
AI人工智能与大数据tensorflow神经网络人工智能ai
TensorFlow图神经网络(GNN)入门指南关键词:TensorFlow、图神经网络、GNN、深度学习、图数据、节点嵌入、图卷积网络摘要:本文全面介绍如何使用TensorFlow实现图神经网络(GNN)。我们将从图数据的基本概念开始,深入探讨GNN的核心原理,包括图卷积网络(GCN)、图注意力网络(GAT)等流行架构,并通过TensorFlow代码示例展示如何构建和训练GNN模型。文章还将涵盖
- 鸿蒙(HarmonyOS)性能优化实战-启动分析工具Launch Profiler 学习指南
愿天堂没有996
HarmonyOS鸿蒙开发移动开发harmonyos性能优化HarmonyOSOpenHarmony移动开发
LaunchProfiler概述DevEcoStudio内置Profiler分析调优工具。其中Launch主要用于分析应用或服务的启动耗时,分析启动周期各阶段的耗时情况、核心线程的运行情况等,协助开发者识别启动缓慢的原因。此外,Launch任务窗口还集成了Time、CPU、Frame场景分析任务的功能,方便开发者在分析启动耗时的过程中同步对比同一时段的其他资源占用情况。场景示例如下代码在页面绘制之
- HarmonyOS多语言支持:如何实现语言资源智能分发
操作系统内核探秘
操作系统内核揭秘harmonyos华为ai
HarmonyOS多语言支持:如何实现语言资源智能分发关键词:HarmonyOS、多语言支持、资源分发、智能调度、动态加载、国际化、本地化摘要:本文深入解析HarmonyOS多语言资源管理体系,系统阐述从基础架构设计到智能分发算法的核心技术。通过剖析资源目录结构、配置文件语法、动态加载机制等底层原理,结合自适应优先级调度算法和数学匹配模型,展示如何实现基于用户习惯、设备环境、区域特征的智能资源分发
- Vulkan多线程录制Command Buffer高效指南
你一身傲骨怎能输
渲染管线CommandBuffer
文章摘要Vulkan支持多线程并行录制CommandBuffer以提升CPU效率,需遵循以下原则:每个线程使用独立CommandPool避免竞争合理分配渲染任务确保负载均衡避免线程间共享资源修改主线程统一提交所有CommandBuffer实现时需为每个线程创建独立CommandPool和CommandBuffer,任务分块后多线程并行录制,最后同步提交。注意资源隔离、同步机制及CommandPoo
- 十五天Python系统学习教程第十五天
Day15详细学习计划:Python综合项目实战与学习路径规划学习目标✅综合运用前14天知识完成完整项目开发✅掌握生产级项目架构设计与优化技巧✅制定后续学习计划与技能提升方案✅理解Python工程化开发最佳实践一、实战项目:企业级任务管理系统1.1项目需求核心功能:用户认证(JWT令牌)任务CRUD与状态流转(待办/进行中/已完成)任务分类与优先级管理数据统计可视化(任务完成率/耗时分析)邮件通知
- 算法 堆与堆排序
堆的定义与分类堆是一种特殊的完全二叉树,通常分为两种类型:大顶堆(大根堆):每个节点的值都大于或等于其子节点的值。小顶堆(小根堆):每个节点的值都小于或等于其子节点的值。堆的性质结构性:堆是一棵完全二叉树,即除了最后一层外,其他层的节点都是满的,且最后一层的节点从左到右填充。有序性:堆中每个节点的值都满足特定的顺序关系(大于或小于子节点)。堆的存储数组索引0通常作为堆的根节点。对于索引为i的节点,
- python函数
四、函数定义P.1函数定义把一段实现某个功能的完整代码,用一个函数封装,后期可以通过调用函数名,实现依次编写,多次调用的目的函数,可以等价于我们初高中学过的f(x),f是运算法则,也就是代码函数中对应的代码执行块,每有一个x对应经过f运算之后得到一个值,如f(x)对应的是让x乘3加2,每有一个x进入f中便会得到一个值。高中对应的函数三要素是,定义域、运算法则、值域,而编程中的函数也有三要素,分别为
- 使用 C++/Faiss 加速海量 MFCC 特征的相似性搜索
whoarethenext
c++faiss开发语言
使用C++/Faiss加速海量MFCC特征的相似性搜索引言在现代音频处理应用中,例如大规模声纹识别(SpeakerRecognition)、音乐信息检索(MusicInformationRetrieval)或音频事件检测(AudioEventDetection),我们通常需要从海量的音频库中快速找到与给定查询音频最相似的样本。这个过程的核心技术是对音频内容进行特征提取和高效的相似性搜索。MFCC(
- 【机器学习笔记 Ⅲ】3 异常检测算法
巴伦是只猫
机器学习机器学习笔记算法
异常检测算法(AnomalyDetection)详解异常检测是识别数据中显著偏离正常模式的样本(离群点)的技术,广泛应用于欺诈检测、故障诊断、网络安全等领域。以下是系统化的解析:1.异常类型类型描述示例点异常单个样本明显异常信用卡交易中的天价消费上下文异常在特定上下文中异常(如时间序列)夏季气温突降至零下集体异常一组相关样本联合表现为异常网络流量中突然的DDOS攻击流量2.常用算法(1)基于统计的
- 【机器学习笔记 Ⅲ】4 特征选择
巴伦是只猫
机器学习机器学习笔记人工智能
特征选择(FeatureSelection)系统指南特征选择是机器学习中优化模型性能的关键步骤,通过筛选最相关、信息量最大的特征,提高模型精度、降低过拟合风险并加速训练。以下是完整的特征选择方法论:1.特征选择的核心目标提升模型性能:去除噪声和冗余特征,增强泛化能力。降低计算成本:减少训练和预测时间。增强可解释性:简化模型,便于业务理解。2.特征选择方法分类(1)过滤法(FilterMethods
- 机器学习笔记二-回归
回归是统计学和机器学习中的一种基本方法,用于建模变量之间的关系,特别是用一个或多个自变量(输入变量)来预测一个因变量(输出变量)的值。回归分析广泛应用于预测、趋势分析和关联研究中。根据目标和数据的性质,可以使用不同类型的回归方法。1.回归的基本概念:自变量(IndependentVariable):也称为预测变量、解释变量,是模型中的输入变量,用于预测或解释因变量的变化。因变量(Dependent
- OpenHarmony解读之设备认证:Pake协议详解与实战
陈乔布斯
鸿蒙开发HarmonyOSOpenHarmonyharmonyos分布式鸿蒙开发软总线openHarmony嵌入式硬件
往期推文全新看点(文中附带最新·鸿蒙全栈学习笔记)①鸿蒙应用开发与鸿蒙系统开发哪个更有前景?②嵌入式开发适不适合做鸿蒙南向开发?看完这篇你就了解了~③对于大前端开发来说,转鸿蒙开发究竟是福还是祸?④鸿蒙岗位需求突增!移动端、PC端、IoT到底该怎么选?⑤记录一场鸿蒙开发岗位面试经历~⑥持续更新中……一、概述在设备认证过程中,pake协议用于认证会话密钥协商,基于该会话密钥,双方可以安全地交换各自的
- AI LLM架构与原理 - 预训练模型深度解析
陈乔布斯
AI人工智能大模型人工智能架构机器学习深度学习大模型PythonAI
一、引言在人工智能领域,大型语言模型(LLM)的发展日新月异,预训练模型作为LLM的核心技术,为模型的强大性能奠定了基础。预训练模型通过在大规模无标注数据上进行学习,能够捕捉语言的通用模式和语义信息,从而在各种自然语言处理任务中展现出卓越的能力。本文将深入探讨AILLM架构与原理中预训练模型的方法论和技术,结合图解、代码解析和实际案例,为读者呈现一个全面且易懂的预训练模型图景。二、预训练模型的基本
- Python程序员如何制定学习计划?提高编写代码的能力
在工作和生活压力之下,如何提升自己的技能和能力?这是许多人都面临的问题。如果你也有这样的问题,那么首先要明确的是,要想提升自己的能力,必须要有一个清晰的计划和方向。这个计划可以是长期的,也可以是短期的,但必须要有一个大的方向性。接下来,我们来看看如何制定一个有效的计划。如果你不知道如何制定计划,其实很简单。你可以闭上眼睛,想一想自己哪些方面比较薄弱,比如多线程锁、Spring的一些核心技术源码、分
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio