- YOLOv12_ultralytics-8.3.145_2025_5_27部分代码阅读笔记-autobackend.py
红色的山茶花
YOLO笔记深度学习
autobackend.pyultralytics\nn\autobackend.py目录autobackend.py1.所需的库和模块2.defcheck_class_names(names:Union[List,Dict])->Dict[int,str]:3.defdefault_class_names(data:Optional[Union[str,Path]]=None)->Dict[in
- 深度学习目标检测之YOLOv3实战(二)训练自己的图像数据
郎郎不会飞
深度学习目标识别python深度学习
深度学习目标检测之YOLOv3实战(二)训练自己的图像数据数据集准备数据集预处理原demo修改数据集训练目标检测补充二零二零年的大年初一,给大家拜个年,祝大家鼠年吉祥,万事如意,趁着喜气,把Yolov3训练自己的数据过程,记录一下,共勉共进。同样,无人机搭载山狗拍摄的视频,目标检测的种类是模型tank和airplane,部分效果图镇贴:数据集准备首先需要将自己的数据集准备好,不同场景下的目标数据尽
- YOLOv12 正式发布 | 检测效果超越YOLO11!!
论文地址:YOLOv12:Attention-CentricReal-TimeObjectDetectors代码地址:https://github.com/sunsmarterjie/yolov12提升YOLO框架的网络架构一直至关重要,尽管注意力机制在建模能力方面已被证明具有优越性,但长期以来一直专注于基于CNN的改进。这是因为基于注意力的模型无法与基于CNN的模型的速度相匹配。本文提出了一种以
- D-FINE模型详解及代码复现
清风AI
目标跟踪人工智能计算机视觉深度学习机器学习python神经网络
研究背景在实时目标检测领域的快速发展背景下,D-FINE作为一项突破性的方法应运而生。它超越了现有模型如YOLOv10、YOLO11及RT-DETRv1/v2/v3,重新定义了边界框回归任务,显著提升了实时目标检测的性能上限。D-FINE通过创新的细粒度分布优化(FDR)和全局最优定位自蒸馏(GO-LSD)机制,为目标检测领域带来了新的突破,为未来的研究奠定了基础。创新优势D-FINE模型在创新方
- YOLOv11革命性升级:基于MobileNetv4的UIB和ExtraDW模块重构C3k2架构,实现移动端推理性能飞跃
博导ai君
深度学习教学-附源码YOLO重构
引言与背景概述在当今人工智能飞速发展的时代,目标检测技术已成为计算机视觉领域的核心技术之一。从自动驾驶汽车到智能安防系统,从移动端AR应用到工业质检,目标检测无处不在。然而,随着应用场景的多样化,特别是移动端和边缘设备的普及,对模型的计算效率提出了更为严苛的要求。YOLO(YouOnlyLookOnce)系列算法作为目标检测领域的领军者,一直在精度与速度之间寻求最佳平衡。从YOLOv1到最新的YO
- 使用Ultralytics YOLO进行数据增强
alpszero
YOLO计算机视觉应用YOLO人工智能机器学习
概述数据增强是计算机视觉领域的一项重要技术,它通过对现有图像进行各种转换,人为地扩展训练数据集。在训练深度学习模型时,数据增强有助于提高模型的鲁棒性,减少过拟合,并增强对真实世界场景的泛化。在训练计算机视觉模型的过程中,数据增强具有多种重要作用:扩展数据集:通过创建现有图像的变体,可以有效增加训练数据集的规模,而无需收集新数据。提高泛化能力:模型学会在各种条件下识别物体,使其在实际应用中更加稳健。
- YOLOV10的tensorrt C++部署
dddccc1234
YOLO
根据博客进行python版本安装YOLOv10最全使用教程(含ONNX和TensorRT推理)-CSDN博客并将pt转为onnx:yoloexportmodel=yolov10s.ptformat=onnxopset=13simplify然后采用:https://github.com/hamdiboukamcha/yolov10-tensorrt.git进行c++编译配置好cuda11.7tens
- YOLOv11: AN OVERVIEW OF THE KEY ARCHITECTURAL ENHANCEMENTS目标检测论文精读(逐段解析)
昵称是6硬币
(持续更新)YOLO深度学习计算机视觉人工智能目标检测图像处理
YOLOv11:ANOVERVIEWOFTHEKEYARCHITECTURALENHANCEMENTS目标检测论文精读(逐段解析)论文地址:https://www.arxiv.org/abs/2410.17725RahimaKhanamandMuhammadHussainUltralytics公司发布CVPR2024论文写的比较简单,比较核心的改进包括:C3K2高效特征提取机制。对C2f模块的改进
- Ultralytics YOLO 库介绍与使用指南
东北豆子哥
人工智能/机器学习YOLO
文章目录UltralyticsYOLO库介绍与使用指南主要特点安装基本使用1.使用预训练模型进行推理2.训练自定义模型3.验证模型4.导出模型高级功能1.使用不同任务模型2.使用自定义数据集3.跟踪对象(结合ByteTrack)常见问题解决性能优化技巧UltralyticsYOLO库介绍与使用指南UltralyticsYOLO是一个流行的计算机视觉库,专注于实现和优化YOLO(YouOnlyLoo
- YOLOv13:开启目标检测新时代,手把手教你实操
奔跑吧邓邓子
必备核心技能YOLO目标检测目标跟踪人工智能实操
目录一、YOLOv13初印象1.1YOLO系列发展脉络1.2YOLOv13独特之处二、前期准备工作2.1环境搭建2.2依赖安装三、深入使用指南3.1模型验证3.2模型训练3.3模型推理四、应用案例与拓展4.1实际场景应用展示4.2与其他技术结合思路五、总结与展望一、YOLOv13初印象1.1YOLO系列发展脉络YOLO(YouOnlyLookOnce)系列算法在目标检测领域中,就如同一位不断进化的
- 从入门到实战:YOLOv13 安装与使用全攻略
奔跑吧邓邓子
必备核心技能YOLO目标跟踪人工智能安装使用全攻略
目录一、YOLOv13简介1.1目标检测与YOLO系列1.2YOLOv13核心技术亮点1.3性能优势展现二、前期准备2.1系统环境要求2.2软件依赖安装三、安装流程3.1获取源码3.2环境搭建3.3安装验证四、使用指南4.1模型验证4.2模型训练4.3模型推理4.4模型导出五、应用案例与技巧5.1实际应用场景展示5.2常见问题与解决方法5.3优化技巧分享六、总结与展望6.1YOLOv13回顾6.2
- YOLOv13:目标检测的全面攻略与实战指南
奔跑吧邓邓子
必备核心技能YOLO目标检测目标跟踪人工智能全攻略实战
目录一、YOLOv13简介1.1YOLO系列发展回顾1.2YOLOv13的特点与优势二、YOLOv13原理剖析2.1HyperACE技术详解2.2FullPAD技术详解2.3轻量级卷积替换技术详解三、YOLOv13性能对比3.1与其他YOLO版本对比3.2实际应用场景对比四、YOLOv13项目结构与使用方式4.1仓库文件结构介绍4.2快速上手步骤五、YOLOv13优化技巧5.1数据增强技巧5.2锚
- ss928v100模型的导出、量化和转换
yunken28
python开发语言
1、yolov8导出为onnxfromultralyticsimportYOLOmodel=YOLO("./best.pt")model.export(format="onnx",imgsz=640,dynamic=False,simplify=True,opset=11,batch=1,half=False)以下是model.export()方法各参数的详细解释:format="onnx"指
- 番外篇 | SEAM-YOLO:引入SEAM系列注意力机制,提升遮挡小目标的检测性能
小哥谈
YOLOv8:从入门到实战YOLO深度学习人工智能机器学习计算机视觉神经网络
前言:Hello大家好,我是小哥谈。SEAM(Squeeze-and-ExcitationAttentionModule)系列注意力机制是一种高效的特征增强方法,特别适合处理遮挡和小目标检测问题。该机制通过建模通道间关系来自适应地重新校准通道特征响应。在遮挡小目标检测中的应用优势包括:1)通道注意力增强:SEAM通过全局平均池化捕获通道级全局信息,帮助网络在遮挡情况下仍能关注关键特征。2)多尺度特
- 目标追踪数据标注
sethrsinine
目标跟踪
在将YOLO(目标检测)和DeepSORT(目标追踪)结合时,数据标注需要同时满足检测和追踪的需求。以下是具体的分阶段标注策略和操作指南:一、标注的核心要求检测标注:每帧中目标的边界框(BoundingBox)和类别标签(如行人、车辆)。追踪标注:跨帧的目标ID(TrackID),确保同一目标在不同帧中ID一致。二、分阶段标注流程阶段1:视频预处理•目标:将视频转换为可标注的帧序列。•操作:使用F
- 【目标检测】YOLOv13:超图增强的实时目标检测新标杆,值得收藏。
Carl_奕然
机器视觉与目标检测目标检测YOLO人工智能
一文掌握YOLOv13最新特性1、引言2、Yolov13详细讲解2.1发布时间与背景2.2相对于YOLOv12的核心提升2.2.1精度显著提升2.2.2轻量化与效率优化2.2.3高阶语义建模能力2.3架构设计与核心创新2.3.1超图自适应关联增强(HyperACE)2.3.2全流程聚合-分发(FullPAD)2.3.3轻量化模块设计2.4性能对比2.4代码示例2.4.1环境配置2.4.2训练代码2
- RDK X5/X3 yolov5目标检测从环境搭建到设备集成
激萌の小宅
YOLOYOLO目标检测人工智能
1、RDKX5yolov5目标检测之训练环境搭建2、RDKX5yolov5目标检测之pt转onnx3、RDKX5yolov5目标检测之开发机环境部署4、RDKX5yolov5目标检测之onnx转bin5、RDKX5yolov5目标检测之开发板运行
- 口罩检测数据集-1591张图片疫情防控管理 智能门禁系统 公共场所安全监控
cver123
数据集目标跟踪人工智能计算机视觉目标检测pytorch
口罩检测数据集-1591张图片已发布目标检测数据集合集(持续更新)口罩检测数据集介绍数据集概览包含类别应用场景数据样本展示文件结构与使用建议使用建议技术标签YOLOv8训练实战1.环境配置安装YOLOv8官方库ultralytics2.数据准备2.1数据标注格式(YOLO)2.2文件结构示例2.3创建data.yaml配置文件3.模型训练关键参数补充说明:4.模型验证与测试4.1验证模型性能关键参
- YOLOv8模型在RDK5开发板上的部署指南:.pt到.bin转换与优化实践
pk_xz123456
python算法仿真模型YOLO人工智能rnn深度学习开发语言lstm
以下是针对在RDK5开发板(基于NVIDIAJetsonOrin平台)部署YOLOv8模型的详细技术指南,涵盖从模型转换、优化到部署的全流程:YOLOv8模型在RDK5开发板上的部署指南:.pt到.bin转换与优化实践——基于TensorRT的高性能嵌入式部署方案第一章:技术背景与核心概念1.1RDK5开发板硬件架构NVIDIAJetsonOrinNX核心参数:1024-coreAmpereGPU
- YOLOv12_ultralytics-8.3.145_2025_5_27部分代码阅读笔记-block.py
红色的山茶花
YOLO笔记深度学习
block.pyultralytics\nn\modules\block.py目录block.py1.所需的库和模块2.classDFL(nn.Module):3.classProto(nn.Module):4.classHGStem(nn.Module):5.classHGBlock(nn.Module):6.classSPP(nn.Module):7.classSPPF(nn.Module):
- 基于YOLOv5的监控摄像头遮挡检测系统:从数据集到UI界面的完整实现
芯作者
D2:YOLOYOLO神经网络
实时守护监控设备安全,智能识别遮挡攻击的AI解决方案一、问题背景与系统价值在安防监控领域,摄像头遮挡是常见的恶意攻击手段——统计显示35%的安防失效源于摄像头被遮挡。传统方案依赖人工巡查,效率低下且响应延迟。本文将带你构建完整的AI遮挡检测系统,核心创新点:双模检测机制:YOLOv5目标检测+背景建模异常分析轻量化部署:模型量化压缩至1.8MB动态学习:运行时自动更新异常样本库二、系统架构设计[视
- Windows系统部署YOLOv5 v6.1版本的训练与推理环境保姆级教程
lujx_1024
windowsYOLO
文章目录一·概述二·依赖环境(`prerequisites`)2.1硬件环境2.2软件环境三·环境安装3.1创建并激活虚拟环境3.2安装`Pytorch`与`torchvision`3.3校验`Pytorch`安装3.4下载`YOLOv5``v6.1`源码3.5安装`YOLOv5`依赖3.6下载预训练模型3.7安装其他依赖3.8测试环境安装3.9测试训练流程四·参考链接一·概述本文档主要记录使用工
- Python编程:使用 YOLO 目标检测
倔强老吕
python开发语言
YOLO(YouOnlyLookOnce)是一种基于深度学习的实时目标检测算法,由JosephRedmon等人于2016年首次提出。与传统的两阶段目标检测方法(如R-CNN系列)不同,YOLO将目标检测任务视为一个单一的回归问题,直接在图像上进行一次推理即可预测边界框和类别概率。YOLO的核心思想单次前向传播(SingleShotDetection):YOLO只需对输入图像进行一次神经网络推理,就
- 基于YOLOv8和Faster R-CNN的输电线路异物目标检测项目 检测 输电线异物数据集 输电线缺陷数据集 绝缘子 如何使用YOLOv8和Faster R-CNN训练输电线路异物目标检测数据集
QQ67658008
YOLOr语言cnn输电线路绝缘子线路异物目标检测
电力篇-输电线路缺陷数据集输电线路异物目标检测数据集16000张5种检测目标:‘burst’-爆裂‘defect’-缺陷‘foreign_obj’-异物‘insulator’-绝缘体‘nest’-窝(巢)带标注-YOLO格式可直接用于YOLO系列目标检测算法模型训练如何使用YOLOv8和FasterR-CNN训练输电线路异物目标检测数据集的详细步骤和代码。假设数据集包含16000张图片和5种检测目
- CIANNA由天体物理学家提供/为天体物理学家提供的卷积交互式人工神经网络
struggle2025
神经网络
一、软件介绍文末提供程序和源码下载CIANNA是一个通用的深度学习框架,主要用于天文数据分析。根据天体物理问题解决的相关性添加功能和优化。CIANNA可用于为各种任务构建和训练大型神经网络模型,并提供高级Python接口(类似于keras、pytorch等)。CIANNA的特点之一是它定制实施了受YOLO启发的对象探测器,用于2D或3D射电天文数据产品中的星系探测。该框架通过低级CUDA编程完全实
- 道路交通标志检测数据集-智能地图与导航 交通监控与执法 智慧城市交通管理-2,000 张图像
cver123
数据集智慧城市人工智能目标跟踪计算机视觉目标检测
道路交通标志检测数据集已发布目标检测数据集合集(持续更新)道路交通标志检测数据集介绍数据集概览包含类别应用场景数据样本展示YOLOv8训练实战1.环境配置安装YOLOv8官方库ultralytics2.数据准备2.1数据标注格式(YOLO)2.2文件结构示例2.3创建data.yaml配置文件3.模型训练关键参数补充说明:4.模型验证与测试4.1验证模型性能关键参数详解常用可选参数典型输出指标4.
- onnx-web + yolov8n 在视频流里做推理
CHEN_RUI_2200
人工智能YOLO
顺着我上一篇文章使用onnxruntime-web运行yolov8-nano推理继续说,有朋友在问能不能接入视频流动,实时去识别物品。首先使用getUserMedia获取摄像头视频流getUserMediaAPI可以访问设备的摄像头和麦克风。你可以使用这个API获取视频流,并将其显示在页面上的标签中。注意事项:浏览器支持:getUserMedia被现代浏览器大多数支持,但在一些旧版浏览器上可能不兼
- 使用YOLOv5-ONNX-PyQT-EXE: 全栈式对象检测应用的构建与部署
使用YOLOv5-ONNX-PyQT-EXE:全栈式对象检测应用的构建与部署去发现同类优质开源项目:https://gitcode.com/在计算机视觉领域,实时对象检测是一个至关重要的任务。是一个开源项目,它将流行的YOLOv5对象检测模型集成到ONNX(OpenNeuralNetworkExchange)中,并通过PyQT构建了一个可执行的应用程序,使得非开发人员也能轻松地进行对象检测。项目简
- 基于YOLOv8的桃子成熟度检测系统,支持图片、视频、摄像头输入,PyQt5界面检测。识别并分类桃子的成熟度(未熟、半熟、成熟)
QQ67658008
YOLO音视频qt桃子成熟水果成熟度检测系统
基于YOLOv8的桃子成熟度检测系统,支持图片、视频、摄像头输入,PyQt5界面检测。识别并分类桃子的成熟度(未熟、半熟、成熟)文章目录调用示例加载预训练模型开始训练加载训练好的模型在验证集上评估加载训练好的模型文字及代码仅供参考。桃子成熟度分类检测数据集,主要用于桃子成熟度分类检测应用任务数据背景:模拟实际田间条件,涵盖多种可能影响桃子检测准确性的因素,如变化的自然光照强度、多果粘连现象以及由枝
- YOLOv5-7.0解决报错 wandb: Network error (TransientError), entering retry loop.
Paper Clouds
Yolo目标检测YOLO人工智能机器学习pythonpytorch深度学习目标检测
前言最近在复习yolov5目标检测代码时用了yolov5的最新7.0版本,之前用的是5.0版本,这一新版本相对于之前做了一些提升,对于package的兼容也要好了很多,但也不是说下载了直接就能运行,实际使用过程中还是遇到了许多新的问题,下面就我自己碰到的问题提出解决方法。问题wandb是非常好用的可视化工具,但是国内的话,使用时常常会无法同步数据,需要借助魔法来连接服务器,而yolov5的源码恰恰
- web报表工具FineReport常见的数据集报错错误代码和解释
老A不折腾
web报表finereport代码可视化工具
在使用finereport制作报表,若预览发生错误,很多朋友便手忙脚乱不知所措了,其实没什么,只要看懂报错代码和含义,可以很快的排除错误,这里我就分享一下finereport的数据集报错错误代码和解释,如果有说的不准确的地方,也请各位小伙伴纠正一下。
NS-war-remote=错误代码\:1117 压缩部署不支持远程设计
NS_LayerReport_MultiDs=错误代码
- Java的WeakReference与WeakHashMap
bylijinnan
java弱引用
首先看看 WeakReference
wiki 上 Weak reference 的一个例子:
public class ReferenceTest {
public static void main(String[] args) throws InterruptedException {
WeakReference r = new Wea
- Linux——(hostname)主机名与ip的映射
eksliang
linuxhostname
一、 什么是主机名
无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。但IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。域名类型 linuxsir.org 这样的;
主机名是用于什么的呢?
答:在一个局域网中,每台机器都有一个主
- oracle 常用技巧
18289753290
oracle常用技巧 ①复制表结构和数据 create table temp_clientloginUser as select distinct userid from tbusrtloginlog ②仅复制数据 如果表结构一样 insert into mytable select * &nb
- 使用c3p0数据库连接池时出现com.mchange.v2.resourcepool.TimeoutException
酷的飞上天空
exception
有一个线上环境使用的是c3p0数据库,为外部提供接口服务。最近访问压力增大后台tomcat的日志里面频繁出现
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.v2.resourcepool.BasicResou
- IT系统分析师如何学习大数据
蓝儿唯美
大数据
我是一名从事大数据项目的IT系统分析师。在深入这个项目前需要了解些什么呢?学习大数据的最佳方法就是先从了解信息系统是如何工作着手,尤其是数据库和基础设施。同样在开始前还需要了解大数据工具,如Cloudera、Hadoop、Spark、Hive、Pig、Flume、Sqoop与Mesos。系 统分析师需要明白如何组织、管理和保护数据。在市面上有几十款数据管理产品可以用于管理数据。你的大数据数据库可能
- spring学习——简介
a-john
spring
Spring是一个开源框架,是为了解决企业应用开发的复杂性而创建的。Spring使用基本的JavaBean来完成以前只能由EJB完成的事情。然而Spring的用途不仅限于服务器端的开发,从简单性,可测试性和松耦合的角度而言,任何Java应用都可以从Spring中受益。其主要特征是依赖注入、AOP、持久化、事务、SpringMVC以及Acegi Security
为了降低Java开发的复杂性,
- 自定义颜色的xml文件
aijuans
xml
<?xml version="1.0" encoding="utf-8"?> <resources> <color name="white">#FFFFFF</color> <color name="black">#000000</color> &
- 运营到底是做什么的?
aoyouzi
运营到底是做什么的?
文章来源:夏叔叔(微信号:woshixiashushu),欢迎大家关注!很久没有动笔写点东西,近些日子,由于爱狗团产品上线,不断面试,经常会被问道一个问题。问:爱狗团的运营主要做什么?答:带着用户一起嗨。为什么是带着用户玩起来呢?究竟什么是运营?运营到底是做什么的?那么,我们先来回答一个更简单的问题——互联网公司对运营考核什么?以爱狗团为例,绝大部分的移动互联网公司,对运营部门的考核分为三块——用
- js面向对象类和对象
百合不是茶
js面向对象函数创建类和对象
接触js已经有几个月了,但是对js的面向对象的一些概念根本就是模糊的,js是一种面向对象的语言 但又不像java一样有class,js不是严格的面向对象语言 ,js在java web开发的地位和java不相上下 ,其中web的数据的反馈现在主流的使用json,json的语法和js的类和属性的创建相似
下面介绍一些js的类和对象的创建的技术
一:类和对
- web.xml之资源管理对象配置 resource-env-ref
bijian1013
javaweb.xmlservlet
resource-env-ref元素来指定对管理对象的servlet引用的声明,该对象与servlet环境中的资源相关联
<resource-env-ref>
<resource-env-ref-name>资源名</resource-env-ref-name>
<resource-env-ref-type>查找资源时返回的资源类
- Create a composite component with a custom namespace
sunjing
https://weblogs.java.net/blog/mriem/archive/2013/11/22/jsf-tip-45-create-composite-component-custom-namespace
When you developed a composite component the namespace you would be seeing would
- 【MongoDB学习笔记十二】Mongo副本集服务器角色之Arbiter
bit1129
mongodb
一、复本集为什么要加入Arbiter这个角色 回答这个问题,要从复本集的存活条件和Aribter服务器的特性两方面来说。 什么是Artiber? An arbiter does
not have a copy of data set and
cannot become a primary. Replica sets may have arbiters to add a
- Javascript开发笔记
白糖_
JavaScript
获取iframe内的元素
通常我们使用window.frames["frameId"].document.getElementById("divId").innerHTML这样的形式来获取iframe内的元素,这种写法在IE、safari、chrome下都是通过的,唯独在fireforx下不通过。其实jquery的contents方法提供了对if
- Web浏览器Chrome打开一段时间后,运行alert无效
bozch
Webchormealert无效
今天在开发的时候,突然间发现alert在chrome浏览器就没法弹出了,很是怪异。
试了试其他浏览器,发现都是没有问题的。
开始想以为是chorme浏览器有啥机制导致的,就开始尝试各种代码让alert出来。尝试结果是仍然没有显示出来。
这样开发的结果,如果客户在使用的时候没有提示,那会带来致命的体验。哎,没啥办法了 就关闭浏览器重启。
结果就好了,这也太怪异了。难道是cho
- 编程之美-高效地安排会议 图着色问题 贪心算法
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Random;
public class GraphColoringProblem {
/**编程之美 高效地安排会议 图着色问题 贪心算法
* 假设要用很多个教室对一组
- 机器学习相关概念和开发工具
chenbowen00
算法matlab机器学习
基本概念:
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
开发工具
M
- [宇宙经济学]关于在太空建立永久定居点的可能性
comsci
经济
大家都知道,地球上的房地产都比较昂贵,而且土地证经常会因为新的政府的意志而变幻文本格式........
所以,在地球议会尚不具有在太空行使法律和权力的力量之前,我们外太阳系统的友好联盟可以考虑在地月系的某些引力平衡点上面,修建规模较大的定居点
- oracle 11g database control 证书错误
daizj
oracle证书错误oracle 11G 安装
oracle 11g database control 证书错误
win7 安装完oracle11后打开 Database control 后,会打开em管理页面,提示证书错误,点“继续浏览此网站”,还是会继续停留在证书错误页面
解决办法:
是 KB2661254 这个更新补丁引起的,它限制了 RSA 密钥位长度少于 1024 位的证书的使用。具体可以看微软官方公告:
- Java I/O之用FilenameFilter实现根据文件扩展名删除文件
游其是你
FilenameFilter
在Java中,你可以通过实现FilenameFilter类并重写accept(File dir, String name) 方法实现文件过滤功能。
在这个例子中,我们向你展示在“c:\\folder”路径下列出所有“.txt”格式的文件并删除。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
- C语言数组的简单以及一维数组的简单排序算法示例,二维数组简单示例
dcj3sjt126com
carray
# include <stdio.h>
int main(void)
{
int a[5] = {1, 2, 3, 4, 5};
//a 是数组的名字 5是表示数组元素的个数,并且这五个元素分别用a[0], a[1]...a[4]
int i;
for (i=0; i<5; ++i)
printf("%d\n",
- PRIMARY, INDEX, UNIQUE 这3种是一类 PRIMARY 主键。 就是 唯一 且 不能为空。 INDEX 索引,普通的 UNIQUE 唯一索引
dcj3sjt126com
primary
PRIMARY, INDEX, UNIQUE 这3种是一类PRIMARY 主键。 就是 唯一 且 不能为空。INDEX 索引,普通的UNIQUE 唯一索引。 不允许有重复。FULLTEXT 是全文索引,用于在一篇文章中,检索文本信息的。举个例子来说,比如你在为某商场做一个会员卡的系统。这个系统有一个会员表有下列字段:会员编号 INT会员姓名
- java集合辅助类 Collections、Arrays
shuizhaosi888
CollectionsArraysHashCode
Arrays、Collections
1 )数组集合之间转换
public static <T> List<T> asList(T... a) {
return new ArrayList<>(a);
}
a)Arrays.asL
- Spring Security(10)——退出登录logout
234390216
logoutSpring Security退出登录logout-urlLogoutFilter
要实现退出登录的功能我们需要在http元素下定义logout元素,这样Spring Security将自动为我们添加用于处理退出登录的过滤器LogoutFilter到FilterChain。当我们指定了http元素的auto-config属性为true时logout定义是会自动配置的,此时我们默认退出登录的URL为“/j_spring_secu
- 透过源码学前端 之 Backbone 三 Model
逐行分析JS源代码
backbone源码分析js学习
Backbone 分析第三部分 Model
概述: Model 提供了数据存储,将数据以JSON的形式保存在 Model的 attributes里,
但重点功能在于其提供了一套功能强大,使用简单的存、取、删、改数据方法,并在不同的操作里加了相应的监听事件,
如每次修改添加里都会触发 change,这在据模型变动来修改视图时很常用,并且与collection建立了关联。
- SpringMVC源码总结(七)mvc:annotation-driven中的HttpMessageConverter
乒乓狂魔
springMVC
这一篇文章主要介绍下HttpMessageConverter整个注册过程包含自定义的HttpMessageConverter,然后对一些HttpMessageConverter进行具体介绍。
HttpMessageConverter接口介绍:
public interface HttpMessageConverter<T> {
/**
* Indicate
- 分布式基础知识和算法理论
bluky999
算法zookeeper分布式一致性哈希paxos
分布式基础知识和算法理论
BY
[email protected]
本文永久链接:http://nodex.iteye.com/blog/2103218
在大数据的背景下,不管是做存储,做搜索,做数据分析,或者做产品或服务本身,面向互联网和移动互联网用户,已经不可避免地要面对分布式环境。笔者在此收录一些分布式相关的基础知识和算法理论介绍,在完善自我知识体系的同
- Android Studio的.gitignore以及gitignore无效的解决
bell0901
androidgitignore
github上.gitignore模板合集,里面有各种.gitignore : https://github.com/github/gitignore
自己用的Android Studio下项目的.gitignore文件,对github上的android.gitignore添加了
# OSX files //mac os下 .DS_Store
- 成为高级程序员的10个步骤
tomcat_oracle
编程
What
软件工程师的职业生涯要历经以下几个阶段:初级、中级,最后才是高级。这篇文章主要是讲如何通过 10 个步骤助你成为一名高级软件工程师。
Why
得到更多的报酬!因为你的薪水会随着你水平的提高而增加
提升你的职业生涯。成为了高级软件工程师之后,就可以朝着架构师、团队负责人、CTO 等职位前进
历经更大的挑战。随着你的成长,各种影响力也会提高。
- mongdb在linux下的安装
xtuhcy
mongodblinux
一、查询linux版本号:
lsb_release -a
LSB Version: :base-4.0-amd64:base-4.0-noarch:core-4.0-amd64:core-4.0-noarch:graphics-4.0-amd64:graphics-4.0-noarch:printing-4.0-amd64:printing-4.0-noa