- DeepSeek R1 与 OpenAI O1:机器学习模型的巅峰对决
学无止尽5
机器学习人工智能
我的个人主页我的专栏:人工智能领域、java-数据结构、Javase、C语言,希望能帮助到大家!!!点赞收藏❤一、引言在机器学习的广袤天地中,大型语言模型(LLM)无疑是最为璀璨的明珠。它们凭借卓越的语言理解与生成能力,正以前所未有的方式重塑着我们与信息交互的模式。DeepSeekR1和OpenAIO1作为其中的佼佼者,代表了当前技术的前沿水准,在架构设计、训练方法、性能表现以及应用场景等诸多层面
- 如何避免redis长期运行持久化AOF文件过大的问题:AOF重写
学会了没
redisaofAOF重写
一、AOF重写的核心作用通过重建AOF文件,解决以下问题:体积压缩:消除冗余命令(如多次修改同一key),生成最小操作集合。混合持久化支持(若启用aof-use-rdb-preambleyes):生成RDB头部+增量AOF命令。数据一致性:确保AOF文件仅包含有效数据集的完整操作记录。二、触发AOF重写的方式1.自动触发通过redis.conf配置触发条件:auto-aof-rewrite-per
- Linux环境基础开发工具yum和vim使用
Yu_Lijing
Linuxlinuxcentos运维
目录1.Linux软件包管理器yum1.1什么是软件包1.2关于rzsz1.3注意事项1.4查看软件包注意事项:1.5如何安装软件注意事项:1.6如何卸载软件2.1Linux编辑器-vim使用2.1.1vim的基本概念2.1.2vim的基本操作2.1.3vim正常模式命令集2.1.4vim末行模式命令集2.1.5vim操作总结2.1.6简单vim配置3.总结1.Linux软件包管理器yum1.1什
- 景联文科技数据处理平台:支持高质量图像标注服务
景联文科技
人工智能科技计算机视觉
图像标注是计算机视觉领域中不可或缺的一环,它通过为图像添加标签来帮助机器学习算法理解图像内容。这一过程对于创建高质量的训练数据集至关重要,使得AI模型能够准确地识别和分类现实世界中的物体。常见的图像标注类型:边界框标注:这是最常用的标注方式之一,通常用于物体检测任务。通过绘制矩形框来确定图像中目标物体的位置,可以是二维或三维形式。分割标注:包括语义分割(同一类别的所有实例被视为整体)和实例分割(每
- 【Stable Diffusion部署至GNU/Linux】安装流程
星星点点洲
stablediffusion
以下是安装StableDiffusion的步骤,以Ubuntu22.04LTS为例子。显卡与计算架构介绍CUDA是NVIDIAGPU的专用并行计算架构技术层级说明CUDAToolkit提供GPU编译器(nvcc)、数学库(cuBLAS)等开发工具cuDNN深度神经网络加速库(需单独下载)GPU驱动包含CUDADriver(需与CUDAToolkit版本匹配)CUDA与NIDIA:硬件指令集绑定:N
- Spark 性能优化(四):Cache
LevenBigData
spark性能调优spark性能优化大数据
在Spark中,缓存是一种将计算结果存储在内存中的方式,目的是加速后续操作。当你执行迭代算法或查询时,如果多次重复使用相同的数据集,缓存可以避免每次都重新计算相同的转换操作。通过缓存,Spark可以将数据存储在内存中,这样在后续的处理阶段就能更快地访问。1.Spark缓存的关键点:缓存基本概念:通过调用.cache()对DataFrame或RDD进行缓存。默认情况下,数据会存储在内存中(RAM),
- 柑橘叶子病害检测数据集VOC+YOLO格900张3类别
FL1623863129
数据集YOLO深度学习机器学习
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):900标注数量(xml文件个数):900标注数量(txt文件个数):900标注类别数:3标注类别名称(注意yolo格式类别顺序不和这个对应,而以labels文件夹classes.txt为准):["canker","kar
- doris:查询缓存
向阳1218
大数据doris
概念介绍SQLCache是Doris提供的一种查询优化机制,可以显著提升查询性能。它通过缓存查询结果来减少重复计算,适用于数据更新频率较低的场景。SQLCache基于以下关键因素来存储和获取缓存:SQL文本视图定义表和分区的版本用户变量和结果值非确定函数和结果值行策略定义数据脱敏定义以上因素的组合唯一确定一个缓存数据集。如果其中任何一个发生变化,例如SQL变化、查询字段或条件不同或者数据更新后版本
- 第二章:13.1 机器学习的迭代发展
望云山190
机器学习人工智能
目录机器学习模型开发流程构建电子邮件垃圾邮件分类器示例总结垃圾邮件分类示例构建垃圾邮件分类器机器学习模型开发流程确定系统架构:首先,需要决定机器学习系统的总体架构,这包括选择合适的模型、确定使用的数据集、可能还包括选择超参数等。实现和训练模型:根据上述决定,实现并训练一个模型。通常,第一次训练的模型不会立即达到预期的效果。诊断和调整:对模型进行诊断,查看算法的偏差、方差或进行错误分析。根据诊断结果
- 深度学习(1)-简单神经网络示例
yyc_audio
深度学习人工智能
我们来看一个神经网络的具体实例:使用Python的Keras库来学习手写数字分类。在这个例子中,我们要解决的问题是,将手写数字的灰度图像(28像素×28像素)划分到10个类别中(从0到9)。我们将使用MNIST数据集,图2-1给出了MNIST数据集的一些样本。在机器学习中,分类问题中的某个类别叫作类(class),数据点叫作样本(sample),与某个样本对应的类叫作标签(label)。你不需要现
- 建筑物损坏程度分割数据集labelme格式2816张5类别
FL1623863129
数据集深度学习
数据集格式:labelme格式(不包含mask文件,仅仅包含jpg图片和对应的json文件)图片数量(jpg文件个数):2816标注数量(json文件个数):2816标注类别数:5标注类别名称:["minor-damage","destroyed","un-classified","major-damage","no-damage"]每个类别标注的框数:minor-damagecount=1371
- 根据deepseek模型微调训练自动驾驶模型及数据集的思路
ywfwyht
自动驾驶深度学习人工智能自动驾驶人工智能机器学习
以下是使用DeepSeek模型微调训练自动驾驶模型的详细步骤和代码示例。本流程假设你已有自动驾驶领域的数据集(如驾驶指令、传感器数据等),并基于PyTorch框架实现。Step1:环境准备#安装依赖库pipinstalltorchtransformersdatasetsnumpypandasStep2:数据准备假设数据集格式为JSON,包含输入文本(传感器/场景描述)和输出控制指令://data/
- 《一文吃透!NLTK与SpaCy,自然语言处理的神兵利器》
人工智能深度学习
在人工智能的璀璨星空中,自然语言处理(NLP)无疑是最为耀眼的领域之一。它让机器能够理解、处理和生成人类语言,极大地推动了智能交互的发展。而在Python的NLP工具库中,NLTK和SpaCy就像两把锋利的宝剑,各自散发着独特的光芒。今天,就让我们深入探究这两款工具的使用技巧与优势,为你的NLP之旅增添强大助力。一、NLTK:自然语言处理的瑞士军刀NLTK(NaturalLanguageToolk
- 计算机 控制面板都打不开怎么办,控制面板打不开怎么办?控制面板打开办法大全...
weixin_39982017
计算机控制面板都打不开怎么办
控制面板真的很好用,在我们电脑卡机的转态下,打开控制面板一键关掉所有应用程序,不要太方便哦。还有的小伙伴喜欢用控制面板打开关闭程序呢。不过控制面板打不开怎么办?贤集网的小编今天就给大家带来了控制面板打开办法大全,里面准保有解决办法。控制面板打不开怎么办1.系统与应用冲突了这种情况在刚刚下载了新应用下比较常见,仔细回想下,问题出在什么时候?是不是刚刚下载过什么应用程序的?删除掉就好了。2.设置了禁止
- Python Pandas数据清洗之缺失数据处理
python慕遥
Pandaspythonpandas开发语言
大家好,在数据分析和处理过程中,缺失数据是常见且不可避免的现象。无论是在数据收集、传输或存储的过程中,数据集可能会出现部分丢失。缺失数据的存在不仅会影响数据的完整性,还可能对后续的数据分析和建模造成不利影响。为了保证数据质量,合理处理缺失数据至关重要。Python的Pandas库提供了强大的工具,能够高效处理数据中的缺失值,特别是通过插值和填充技术来弥补数据的缺失。本文将介绍如何使用Pandas处
- 计算机视觉:COCO数据集
00&00
计算机视觉深度学习人工智能计算机视觉人工智能
COCO(CommonObjectsinContext)是一个广泛使用的计算机视觉数据集,主要用于图像识别、物体检测、分割和关键点检测等任务。以下是对COCO数据集的详细介绍,包括其特点、组成部分以及在计算机视觉中的应用。一、COCO数据集的特点1.规模庞大COCO数据集包含超过30万张图像,其中超过20万张图像有注释。这些图像来自不同的场景和对象,使得数据集具有广泛的代表性。2.丰富的标注信息物
- Docker 数据卷的使用与数据持久化(一)
计算机毕设定制辅导-无忧学长
#Dockerdockereureka容器
引言在容器化技术的广阔天地里,Docker无疑是一颗璀璨的明星,它以轻量级、高效部署等特性,彻底改变了应用程序的交付和运行方式。在Docker的众多核心特性中,数据卷(Volume)犹如基石一般,支撑着容器化应用的数据持久化和数据共享需求,成为了Docker生态中不可或缺的关键部分。容器的本质是一种轻量级、可移植的运行环境,它的设计理念是将应用及其依赖打包在一起,实现快速部署和隔离运行。然而,这种
- (15-3)DeepSeek混合专家模型初探:模型微调
码农三叔
训练RAG多模态)人工智能Deekseep深度学习大模型transformer
3.4模型微调在本项目中,微调脚本文件finetune.py提供了一套全面的工具,用于对DeepSeek-MoE预训练语言模型进行微调。支持加载特定任务的数据、对数据进行预处理和编码,以及通过多种配置选项(如LoRA量化、分布式训练等)对模型进行高效训练。用户可以根据自己的需求,通过命令行参数或配置文件调整微调策略,以优化模型在特定任务或数据集上的性能。3.4.1微调原理在DeepSeek-MoE
- 2025年大模型与Transformer架构:技术前沿与未来趋势报告
和老莫一起学AI
transformer架构深度学习人工智能产品经理学习大模型
_“欧米伽未来研究所”关注科技未来发展趋势,研究人类向欧米伽点演化过程中面临的重大机遇与挑战。将不定期推荐和发布世界范围重要科技研究进展和未来趋势研究。在人工智能的宏大版图中,Transformer架构无疑是一颗璀璨的明星。它的出现,彻底改变了自然语言处理、计算机视觉等诸多领域的发展轨迹。《2025年大模型与Transformer架构:技术前沿与未来趋势报告》深入剖析了Transformer架构的
- AI 大模型创业:如何利用市场优势?
SuperAGI2025
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI大模型创业:如何利用市场优势?1.背景介绍随着人工智能技术的不断发展,大模型(LargeModels)在商业化应用中日益受到关注。大模型是指在特定领域中应用广泛、参数量巨大的神经网络模型,如BERT、GPT-3、DALL-E等。这些大模型通过在大规模数据集上进行预训练,具备强大的泛化能力和适应性,能够广泛应用于自然语言处理(NLP)、计算机视觉(CV)、生成对抗网络(GAN)等多个领域。然而,
- YOLOv1 损失函数
余将董道而不豫兮
YOLO神经网络python深度学习人工智能机器学习计算机视觉
相关文章YOLOv1论文简要YOLOv1数据集加载YOLOv1损失函数YOLOv1模型构建与训练YOLOv1目标检测项目地址:YOLOv1VOC2007笔者训练的权重地址:阿里云盘分享10秒文章速览对于YOLOv1的损失函数,使用Python程序实现损失函数的计算关于损失函数的计算,在《YOLOv1论文简要》一文中已经进行了较详细的解释。只不过,在本文中,需要以代码的形式表达出来平方和误差在YOL
- 使用 Three.js 实现炫酷的除夕烟花特效
软件工程师文艺
前端javascript前端3d
1,前言在除夕夜,璀璨的烟花点亮夜空,为节日增添了浓厚的喜庆氛围。在Web端,我们可以使用Three.js来模拟这种美轮美奂的烟花特效,让网页也能展现绚丽的节日气息。本文将介绍如何利用Three.js及其着色器技术,创建一个动态的烟花爆炸效果。2,技术原理解析为了模拟真实的烟花,我们需要解决以下几个关键问题:烟花的轨迹:在爆炸前,烟花需要沿着一定的路径上升。爆炸模拟:在特定高度,烟花粒子会向各个方
- golang使用redis实现全文搜索
千年死缓
golangredis开发语言
简介使用redis实现全部文章精确到段落的搜索实现思路文章分段,使用一张表单独记录下段落信息段落分词,把段落划分成词分词后使用有序集合记录到redis中,每个词语后记录含有该分词的段落ID集使用一个哈希键记录下每个段落的分词,用于分词信息的删除查询时先分词,再根据分的词把分词查到的对应的段落返回结果具体实现文章分段文章段落表结构typeTextModelstruct{gorm.ModelArtic
- DOS命令行乱码解决办法
王了了哇
windows
DOS中文乱码解决在中文Windows系统中,如果一个文本文件是UTF-8编码的,那么在CMD.exe命令行窗口(所谓的DOS窗口)中不能正确显示文件中的内容。在默认情况下,命令行窗口中使用的代码页是中文或者美国的,即编码是中文字符集或者西文字符集。如果想正确显示UTF-8字符,可以按照以下步骤操作:1、打开CMD.exe命令行窗口2、通过chcp命令改变代码页,UTF-8的代码页为65001ch
- Elasticsearch和Kibana的安装部署及服务器配置
TpCode
elasticsearch服务器大数据
Elasticsearch和Kibana是一对强大的工具,用于搜索、分析和可视化大规模数据集。Elasticsearch是一个开源的分布式搜索和分析引擎,而Kibana是一个用于数据可视化的开源工具。本文将详细介绍如何安装、部署和配置Elasticsearch和Kibana,并在服务器上运行它们。步骤1:安装JavaElasticsearch和Kibibana都需要Java来运行。确保您的服务器上
- ADX物化视图的内存优化与去重策略
t0_54coder
编程问题解决手册flaskpython后端个人开发
在AzureDataExplorer(ADX)中使用物化视图(MaterializedView)时,处理大规模数据集的去重和聚合操作时,可能会遇到内存问题。本文将详细讨论如何通过优化策略来克服这些问题,并提供一个具体的实例来展示如何实现。问题背景当我们尝试在ADX中创建一个物化视图,用于从源表中去除重复数据并进行聚合操作时,常常会遇到内存不足的错误。这通常是由于distinct*操作过于消耗内存,
- 初阶c语言(循环语句习题,完结)
不灭锦鲤
c语言算法数据结构
前言:c语言为b站鹏哥,嗯对应视频37集昨天做的c语言,今天在来做一遍,发现做错了今天改了平均值的计算,就是说最大值加上最小值,如果说这个数值非常大的话,两个值加上会超过int类型的最大值,从而导致数值的重新计算,导致结果不稳定,所以换一种计算方法第二题,折半查找法环境介绍,就是devc++软件运行编译就是说最大值减去最小值,然后中间有个差值,将他分成一半给最小值,那两个就都是平均值了#inclu
- 探索外盘期货:主力连续合约与月份合约数据解析
level2Tick
外盘期货高频数据区块链人工智能大数据数据库金融python
探索外盘期货:主力连续合约与月份合约数据解析为了促进学习和研究,我们在此分享一部分匿名处理的外盘期货高频历史行情数据集。外盘期货分钟高频历史行情数据链接:https://pan.baidu.com/s/1vkCwoZhbk55MXF7o8724Xw?pwd=9tna提取码:9tna请注意,分享这些数据的目的是为了教育和研究,不构成任何投资建议。描述性统计分析通过对纽约期货高频合约历史行情数据的描述
- 大模型参数高效微调(PEFT)技术解析及微调加速实践
AI产品经理
人工智能自然语言处理深度学习语言模型
2023年,大模型如雨后春笋般爆发,58同城TEG-AILab作为AI平台部门,紧跟大语言模型技术发展步伐,打造了大语言模型平台,支持大语言模型训练和推理部署,并基于大语言模型平台构建了58同城生活服务领域(房产、招聘、汽车、黄页)垂类大模型灵犀大语言模型(ChatLing),支撑了业务方大模型应用的探索落地。灵犀大语言模型在公开评测集和实际应用场景下,效果均优于开源通用大语言模型以及商用通用大语
- [linux专题]CMakeLists 使用案例详解
AgingMoon
LinuxlinuxcmakeCMakefile
目录1.为什么CMake2.案例使用说明2.1简单文件编译2.2多文件多目录编译2.3进阶使用3.CMake常用语法3.1常用模板3.2常用命令1.为什么CMakecmake可用于跨平台、开源的构建系统。它是一个集软件构建、测试、打包于一身的软件。它使用与平台和编译器独立的配置文件来对软件编译过程进行控制。2.案例使用说明2.1简单文件编译/*simple.c*/#include#includei
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。