- keras快速上手-基于python的深度学习实践-基于索引的深度学习对话模型-源代码...
weixin_34162401
该章的源代码已经调通,如下,先记录下来,再慢慢理解#!/usr/bin/envpython#coding:utf-8#In[1]:importpandasaspdimportnumpyasnpimportpickleimportkerasfromkeras.modelsimportSequential,Modelfromkeras.layersimportInput,Dense,Activatio
- yolo是什么,有什么优缺点以及YOLO的应用场景?
cesske
YOLO
目录前言一、yolo是什么?二、YOLO的优点三、YOLO的缺点四、YOLO的应用场景总结前言这里我们来讲一下yolo是什么,有什么优缺点?一、yolo是什么?“YOLO”在计算机视觉和深度学习领域是一个特定的算法框架,全称是“YouOnlyLookOnce”。这个算法最初由JosephRedmon、SantoshDivvala、RossGirshick和AliFarhadi在2015年提出,旨在
- 2025年编程AI工具概览
hawkol
人工智能
随着人工智能技术的飞速发展,编程AI工具在2025年已成为程序员和开发者的得力助手。这些工具不仅提高了编程效率,还在代码质量、自动化和创新性方面表现出显著优势。以下是一些在2025年备受推崇的编程AI工具:1.GitHubCopilotGitHubCopilot是由GitHub、OpenAl和Microsoft联合打造的一款高级代码生成和辅助工具。它基于OpenAl的Codex模型,能够理解自然语
- 简述web3.0前端开发的最简单三个步骤
飞机号Mrsfu223
web3区块链pythonjava开发语言
Web3.0是互联网的下一代前沿技术,包括人工智能,大数据和区块链都是这项技术的核心,Web3.0为用户提供了更为智能的互联网服务体验,该技术的核心要素为去中心化,也就是摆脱中心化的权力控制,能够让数据和各项交易通过网络里的各项节点来维护和验证,并不是通过中心化的机构或服务器控制各项节点,Web3有车有中心化,有户权益性,去信任化,互操作性这些特点,可以拥有更大的操作空间和可能性。去中心化是基于区
- .NET/C#大型项目研发必备(5)--Web服务/WebApi的负载均衡
DeveloperSharp
负载均衡负载均衡器webapi微服务
前言:本系列文章适合有初/中级.NET知识的同学阅读。(1)本系列文章,旨在讲述研发一个中大型项目所需要了解的一系列“基本构件”,并提供这些“基本构件”的【最简单】、【最快速】使用方法!!(并不深究技术原理)(2)通过阅读本系列文章,能让你在正规“项目研发”方面快速入门+进阶,并能达成“小团队构建大网站”的目的。(3)本系列文章采用的技术,已成功应用到人工智能、产业互联网、社区电商、游戏、金融风控
- AI真的能理解我们这个现实物理世界吗?深度剖析原理、实证及未来走向
AI_DL_CODE
人工智能深度学习AIAI理解世界
摘要:当下,AI与深度学习广泛渗透生活各领域,大模型与海量数据加持下,其是否理解现实物理世界引发热议。文章开篇抛出疑问,随后深入介绍AI深度学习基础,包含神经网络架构、反向传播算法。继而列举AI在物理场景识别、实验数据分析中显露的“理解”迹象,也点明常识性错误、极端场景失效这类反例。从信息论、物理启发式算法剖析理论支撑,探讨融合物理知识路径,并延展至跨学科应用、评估维度、伦理社会问题,最终展望AI
- 攻克设备数据质量难题:深度学习应用的数据基石搭建教程(DBSCAN 聚类算法)
AI_DL_CODE
深度学习运维算法数据质量DBSCAN聚类算法
摘要:在深度学习赋能设备管理的浪潮中,数据质量成为关键瓶颈。本文聚焦设备数据采集与预处理阶段面临的噪声干扰、数据缺失等难题,深入讲解强化采集端管控的策略,详细剖析聚类、统计法及线性回归模型在数据清洗与补全中的应用原理,并结合振动传感器数据实例给出可实操的Python代码。旨在为从业者提供一站式解决方案,助力打造高质量设备数据集,为深度学习模型高效运行筑牢根基,推动设备管理智能化落地。文章目录攻克设
- 人工智能在药物研发中的应用 - 从靶点发现和化合物筛选:利用AI深度学习技术加速药物研发流程
AI_DL_CODE
人工智能深度学习药物研发deeplearning
摘要:本文探讨了人工智能(AI)在药物研发中的应用,强调了AI在加速药物发现、降低成本和提高成功率方面的重要性。文章概述了AI在药物靶点识别、化合物筛选、药物设计优化等方面的应用,并详细介绍了机器学习和深度学习的基本原理。通过一个实操案例,展示了如何利用AI技术对化合物数据进行分析,预测潜在的药物候选物。案例包括数据预处理、模型训练、评估和优化等步骤,证明了AI在提高药物研发效率和准确性方面的潜力
- pytorch实现循环神经网络
纠结哥_Shrek
pytorchrnn深度学习
人工智能例子汇总:AI常见的算法和例子-CSDN博客PyTorch提供三种主要的RNN变体:nn.RNN:最基本的循环神经网络,适用于短时依赖任务。nn.LSTM:长短时记忆网络,适用于长序列数据,能有效解决梯度消失问题。nn.GRU:门控循环单元,比LSTM计算更高效,适用于大部分任务。网络类型优势适用场景RNN计算简单,适用于短时序列语音、文本处理(短序列)LSTM适用于长序列,能记忆长期信息
- 基于 YOLOv8+PyQt5 的无人机红外目标检测系统:开启智能监测新时代
人工智能教学实践
人工智能YOLOqt无人机
基于YOLOv8+PyQt5的无人机红外目标检测系统:开启智能监测新时代【毕业与课程大作业参考】基于yolov8+pyqt5界面自适应的无人机红外目标检测系统demo.zip资源-CSDN文库在科技飞速发展的今天,无人机技术在各个领域的应用越来越广泛。为了提升无人机在复杂环境下的目标检测能力,结合先进的深度学习算法和图形用户界面开发技术,打造功能强大的无人机红外目标检测系统成为了研究热点。本文将详
- 使用Transformer模型实现股票走势预测:深入解析和实操案例(基于Python和PyTorch)
AI_DL_CODE
pythontransformerpytorch股票预测
摘要:本文讨论了Transformer模型在股票市场预测中的应用,突出其自注意力机制在捕捉长期趋势和周期性变化方面的优势。文章详细介绍了模型理论、架构,并分析了其在股价预测中的优势和挑战。通过实操案例,展示了如何使用Python和PyTorch进行模型构建、训练和评估,包括数据预处理和性能评价。结果证实Transformer模型能有效预测股价,但需注意过拟合和数据量问题。未来研究将着眼于模型优化和
- 基于深度学习的视觉检测小项目(十六) 用户管理界面的组态
深蓝海拓
基于YOLO的视觉检测小项目深度学习人工智能pythonpyqtqt
分组和权限:用户分为三个组,管理员、普通用户、访客。•管理员的权限和作业范围:添加和删除用户、更改所有用户的信息(用户名、登录密码、所在分组等)、查看和备份以及复制数据库;•普通用户的权限和作业范围:更改自己的用户名和密码、开展工作业务、查看数据库;•访客的权限和作业范围:查看数据库。用于用户管理的界面:既然用到了用户的管理,那么就必然涉及到用户列表的展示方式了。QT对于列表内容的展示方式有:QC
- 深度学习基因组学+机器学习单细胞分析,当下最火热研究方向!
qwmb919
人工智能深度学习机器学习python
深度学习已经被广泛应用于基因组学研究中,利用已知的训练集对数据的类型和应答结果进行预测,深度学习,可以进行预测和降维分析。深度学习模型的能力更强且更灵活,在适当的训练数据下,深度学习可以在较少人工参与的情况下自动学习特征和规律。调控基因组学,变异检测,致病性评分成功应用。深度学习可以提高基因组数据的可解释性,并将基因组数据转化为可操作的临床信息。深度学习通过强大的深度神经网络模型从高维大数据中自动
- 【llm对话系统】大模型 Llama、Qwen 和 ChatGLM 的网络结构和训练方法对比
kakaZhui
llama人工智能AIGCchatgptpython
1.引言近年来,大型语言模型(LLM)取得了令人瞩目的进展,其中Llama、Qwen和ChatGLM是三个备受关注的开源模型。它们都在Transformer架构的基础上进行了改进和优化,并在各种NLP任务上取得了优异的性能。本文将深入分析Llama、Qwen和ChatGLM的网络结构和训练方法,比较它们的异同以及各自的优势。2.模型结构对比特性LlamaQwenChatGLM基础架构Decoder
- 深度学习之线性代数
ousinka
DJLd2lcoderJava开发者动手学习深度学习深度学习java机器学习
深度学习之线性代数标量如果你从来没有学过线性代数或机器学习,那么你过去的数学经历可能是一次只想一个数字。如果你曾经用钱买个茶叶蛋,或者在付过打车费,那么你已经知道如何做一些基本的事情,比如在数字间相加或相乘。例如,上海的温度现在为13摄氏度。严格来说,我们称仅包含一个数值的叫标量(scalar)。在数学表示法,其中标量变量由普通小写字母表示(例如,x、y和z)。我们用R表示所有(连续)实数标量的空
- 一、深度学习与线性代数
新禾
深度学习线性代数深度学习线性代数人工智能
一、深度学习与线性代数在计算机的内存或硬盘中,数据通常是以字符集编码成0和1的形式进行存储的,读取时再以相同字符集进行解码进行显示的。然而在深度学习中,数据在内存或显存中的表示都是以向量的形式表示的。1、字符在计算机中的表示在我们所接触到的手机、电脑、电视所呈现的字符,其原理大概:就是存储在内存、硬盘中的0和1的数字被解码成字符再去映射到屏幕上。目前最常见的编码格式有:ASCII:初代计算机采用的
- 深度学习——线性代数
取个名字真难啊啊
深度学习深度学习线性代数
文章目录1.基本数学概念2.线性相关和生成子空间3.范式4.特殊类型的矩阵和向量5.特征分解6.奇异值分解1.基本数学概念标量(scalar):一个标量就是一个单独的数,它不同于线性代数中研究的其他大部分对象(通常是多个数的数组)。我们用斜体表示标量。标量通常被赋予小写的变量名称。当我们介绍标量时,会明确它们是哪种类型的数。比如,在定义实数标量时,我们可能会说“令s∈R表示一条线的斜率”;在定义自
- 深度学习的应用场景及常用技术
eso1983
深度学习
深度学习作为机器学习的一个重要分支,在众多领域都有广泛的应用,以下是一些主要的应用场景及常用技术。1.应用场景1.计算机视觉图像分类描述:对图像中的内容进行分类,识别出图像中物体所属的类别。例如,在安防领域,通过对监控摄像头拍摄的图像进行分类,判断是否有可疑人员或物品出现;在电商领域,对商品图片进行分类,方便用户搜索和筛选商品。示例:识别图片中的动物是猫还是狗,或者判断一张图片是风景照还是人物照。
- 无线通信与人工智能技术与发展年度总结
Loving_enjoy
实用技巧人工智能信息与通信
2024年,无线通信与人工智能技术取得了显著的进步和突破,这些技术的革新不仅推动了行业的数字化转型,还为全球经济的持续发展注入了新的活力。以下是对无线通信与人工智能技术在这一年发展的详细总结。####无线通信技术的飞速演进无线通信技术的历史可以追溯到19世纪末,意大利科学家马可尼成功实现无线电波传输,开启了无线通信的大门。然而,直到20世纪后期,无线通信技术才真正开始腾飞,从2G到5G不断演进,如
- 深度学习-图像数据标注工具使用(LabelImg和BBox)
AI研习图书馆
方法教程LabelImgBBox图像标注工具
文章与视频资源多平台更新微信公众号|知乎|B站|头条:AI研习图书馆深度学习、大数据、IT编程知识与资源分享,欢迎关注,共同进步~图像数据标注工具的使用教程1.LabelImgLabelImg下载地址:https://github.com/tzutalin/labelImg(下载源码,需要编译)Windows和Linux系统可运行软件:http://tzutalin.github.io/label
- 探索Labelbox:打造自定义标注应用的利器!
孔旭澜Renata
探索Labelbox:打造自定义标注应用的利器!去发现同类优质开源项目:https://gitcode.com/项目介绍Labelbox是一款专为企业级客户设计的高级数据标注工具。它允许用户构建自己的定制标注界面(编辑器),提供强大的API和SDK,以适应各种复杂的数据标注需求。无论你是人工智能研究者、数据科学家还是软件开发者,Labelbox都能帮助你高效、精准地处理你的数据。技术分析Label
- GPU架构(1.2)--GPU SoC 中的 CPU 架构
小蘑菇二号
手把手教你学GPUSoC芯片智能电视
目录详细介绍GPUSoC中的CPU架构1.CPU核心概述ARMCortex-A72ARMCortex-A762.多线程处理多核架构多线程支持3.任务调度任务调度器动态调度4.内存管理内存层次结构内存管理技术5.接口和通信总线接口I/O接口6.功耗和热管理功耗优化热管理7.应用实例边缘计算图形处理深度学习结语详细介绍GPUSoC中的CPU架构GPUSoC不仅集成了高性能的GPU,还集成了高性能的CP
- 大语言模型丨ChatGPT-4o深度科研应用、论文与项目撰写、数据分析、机器学习、深度学习及AI绘图(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)
赵钰老师
ChatGPTpython人工智能语言模型深度学习数据分析chatgpt机器学习随机森林
目录第一章、2024大语言模型最新进展与ChatGPT各模型第二章、ChatGPT-4o提示词使用方法与高级技巧(最新加入思维链及逆向工程及GPTs)第三章、ChatGPT4-4o助力日常生活、学习与工作第四章、基于ChatGPT-4o课题申报、论文选题及实验方案设计第五章、基于ChatGPT-4o信息检索、总结分析、论文写作与投稿、专利idea构思与交底书的撰写第六章、ChatGPT-4o编程入
- 【python】在【机器学习】与【数据挖掘】中的应用:从基础到【AI大模型】
小李很执着
杂乱无章机器学习数据挖掘python人工智能语言模型
目录一、Python在数据挖掘中的应用1.1数据预处理数据清洗数据变换数据归一化高级预处理技术1.2特征工程特征选择特征提取特征构造二、Python在机器学习中的应用2.1监督学习分类回归2.2非监督学习聚类降维三、Python在深度学习中的应用3.1深度学习框架TensorFlowPyTorch四、Python在AI大模型中的应用4.1大模型简介4.2GPT-4o实例五、实例验证5.1数据集介绍
- Unet 改进:在encoder和decoder间加入TransformerBlock
听风吹等浪起
AI改进系列transformer图像分割Unet
目录1.TransformerBlock2.Unet改进3.完整代码Tips:融入模块后的网络经过测试,可以直接使用,设置好输入和输出的图片维度即可1.TransformerBlockTransformerBlock是Transformer模型架构的基本组件,广泛应用于机器翻译、文本摘要和情感分析等自然语言处理任务。TransformerBlock是一个由两个子组件组成的构建块:多头注意力机制和前
- 开源LLMs导览:工作原理、顶级LLM列表对比
万俟淋曦
SomeInsights人工智能AI生成式人工智能大模型LLMchatgpt大语言模型
机器人、人工智能相关领域news/events(专栏目录)本文目录一、开源LLM是什么意思?二、开源LLM如何工作?2.1预训练2.2代币化2.3开源LLM的微调2.4输入编码2.5训练与优化2.6推理三、开源LLM对组织的好处3.1增强的数据安全和隐私3.2节约成本3.3减少供应商依赖性3.4代码透明度四、哪种LLM模式最好?4.1BERT4.2LLaMA(LargeLanguageModelM
- MixRec: Heterogeneous Graph Collaborative Filtering
UnknownBody
Recommendation人工智能
本文是深度学习相关文章,针对《MixRec:HeterogeneousGraphCollaborativeFiltering》的翻译。MixRec:异构图协同过滤摘要1引言2前言3方法4评估5相关工作6结论摘要对于现代推荐系统来说,使用低维潜在表示来嵌入用户和基于他们观察到的交互的项目已经变得司空见惯。然而,许多现有的推荐模型主要是为粗粒度和同质交互而设计的,这限制了它们在两个关键维度上的有效性。
- LearnLM: Improving Gemini for Learning
UnknownBody
LLMDaily语言模型人工智能自然语言处理
本文是LLM系列文章,针对《LearnLM:ImprovingGeminiforLearning》的翻译。LearnLM:提升Gemini的学习能力摘要1引言2建模3人类评价设计4结果5结论摘要今天的生成式人工智能系统默认情况下会呈现信息,而不是像人类导师那样让用户参与学习服务。为了解决这些系统的广泛潜在教育用例,我们将注入教学行为的挑战重新定义为一种教学指导,其中培训和评估示例包括描述后续模型中
- 【python】利用 GridSearchCV 和 SVM 进行学生成绩预测
码银
支持向量机机器学习人工智能
在机器学习领域,寻找最优模型参数是一个重要的步骤,它直接影响模型的泛化能力和预测准确性。本文将通过一个具体案例介绍如何使用支持向量机(SVM)和网格搜索(GridSearchCV)来预测学生的成绩,并通过调整参数来优化模型性能。数据集:公众号“码银学编程”后台回复:学生成绩-SVM前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家:前言–人工智能教程引言学生的成绩预测
- 深度学习论文: Cultivated Land Extraction from High-Resolution Remote Sensing Image
mingo_敏
PaperReadingDeepLearningInstanceSegmentationpython人工智能机器学习
深度学习论文:CultivatedLandExtractionfromHigh-ResolutionRemoteSensingImageTheWinningSolutiontotheiFLYTEKChallenge2021CultivatedLandExtractionfromHigh-ResolutionRemoteSensingImagePDF:https://arxiv.org/pdf/22
- jQuery 跨域访问的三种方式 No 'Access-Control-Allow-Origin' header is present on the reque
qiaolevip
每天进步一点点学习永无止境跨域众观千象
XMLHttpRequest cannot load http://v.xxx.com. No 'Access-Control-Allow-Origin' header is present on the requested resource. Origin 'http://localhost:63342' is therefore not allowed access. test.html:1
- mysql 分区查询优化
annan211
java分区优化mysql
分区查询优化
引入分区可以给查询带来一定的优势,但同时也会引入一些bug.
分区最大的优点就是优化器可以根据分区函数来过滤掉一些分区,通过分区过滤可以让查询扫描更少的数据。
所以,对于访问分区表来说,很重要的一点是要在where 条件中带入分区,让优化器过滤掉无需访问的分区。
可以通过查看explain执行计划,是否携带 partitions
- MYSQL存储过程中使用游标
chicony
Mysql存储过程
DELIMITER $$
DROP PROCEDURE IF EXISTS getUserInfo $$
CREATE PROCEDURE getUserInfo(in date_day datetime)-- -- 实例-- 存储过程名为:getUserInfo-- 参数为:date_day日期格式:2008-03-08-- BEGINdecla
- mysql 和 sqlite 区别
Array_06
sqlite
转载:
http://www.cnblogs.com/ygm900/p/3460663.html
mysql 和 sqlite 区别
SQLITE是单机数据库。功能简约,小型化,追求最大磁盘效率
MYSQL是完善的服务器数据库。功能全面,综合化,追求最大并发效率
MYSQL、Sybase、Oracle等这些都是试用于服务器数据量大功能多需要安装,例如网站访问量比较大的。而sq
- pinyin4j使用
oloz
pinyin4j
首先需要pinyin4j的jar包支持;jar包已上传至附件内
方法一:把汉字转换为拼音;例如:编程转换后则为biancheng
/**
* 将汉字转换为全拼
* @param src 你的需要转换的汉字
* @param isUPPERCASE 是否转换为大写的拼音; true:转换为大写;fal
- 微博发送私信
随意而生
微博
在前面文章中说了如和获取登陆时候所需要的cookie,现在只要拿到最后登陆所需要的cookie,然后抓包分析一下微博私信发送界面
http://weibo.com/message/history?uid=****&name=****
可以发现其发送提交的Post请求和其中的数据,
让后用程序模拟发送POST请求中的数据,带着cookie发送到私信的接入口,就可以实现发私信的功能了。
- jsp
香水浓
jsp
JSP初始化
容器载入JSP文件后,它会在为请求提供任何服务前调用jspInit()方法。如果您需要执行自定义的JSP初始化任务,复写jspInit()方法就行了
JSP执行
这一阶段描述了JSP生命周期中一切与请求相关的交互行为,直到被销毁。
当JSP网页完成初始化后
- 在 Windows 上安装 SVN Subversion 服务端
AdyZhang
SVN
在 Windows 上安装 SVN Subversion 服务端2009-09-16高宏伟哈尔滨市道里区通达街291号
最佳阅读效果请访问原地址:http://blog.donews.com/dukejoe/archive/2009/09/16/1560917.aspx
现在的Subversion已经足够稳定,而且已经进入了它的黄金时段。我们看到大量的项目都在使
- android开发中如何使用 alertDialog从listView中删除数据?
aijuans
android
我现在使用listView展示了很多的配置信息,我现在想在点击其中一条的时候填出 alertDialog,点击确认后就删除该条数据,( ArrayAdapter ,ArrayList,listView 全部删除),我知道在 下面的onItemLongClick 方法中 参数 arg2 是选中的序号,但是我不知道如何继续处理下去 1 2 3
- jdk-6u26-linux-x64.bin 安装
baalwolf
linux
1.上传安装文件(jdk-6u26-linux-x64.bin)
2.修改权限
[root@localhost ~]# ls -l /usr/local/jdk-6u26-linux-x64.bin
3.执行安装文件
[root@localhost ~]# cd /usr/local
[root@localhost local]# ./jdk-6u26-linux-x64.bin&nbs
- MongoDB经典面试题集锦
BigBird2012
mongodb
1.什么是NoSQL数据库?NoSQL和RDBMS有什么区别?在哪些情况下使用和不使用NoSQL数据库?
NoSQL是非关系型数据库,NoSQL = Not Only SQL。
关系型数据库采用的结构化的数据,NoSQL采用的是键值对的方式存储数据。
在处理非结构化/半结构化的大数据时;在水平方向上进行扩展时;随时应对动态增加的数据项时可以优先考虑使用NoSQL数据库。
在考虑数据库的成熟
- JavaScript异步编程Promise模式的6个特性
bijian1013
JavaScriptPromise
Promise是一个非常有价值的构造器,能够帮助你避免使用镶套匿名方法,而使用更具有可读性的方式组装异步代码。这里我们将介绍6个最简单的特性。
在我们开始正式介绍之前,我们想看看Javascript Promise的样子:
var p = new Promise(function(r
- [Zookeeper学习笔记之八]Zookeeper源代码分析之Zookeeper.ZKWatchManager
bit1129
zookeeper
ClientWatchManager接口
//接口的唯一方法materialize用于确定那些Watcher需要被通知
//确定Watcher需要三方面的因素1.事件状态 2.事件类型 3.znode的path
public interface ClientWatchManager {
/**
* Return a set of watchers that should
- 【Scala十五】Scala核心九:隐式转换之二
bit1129
scala
隐式转换存在的必要性,
在Java Swing中,按钮点击事件的处理,转换为Scala的的写法如下:
val button = new JButton
button.addActionListener(
new ActionListener {
def actionPerformed(event: ActionEvent) {
- Android JSON数据的解析与封装小Demo
ronin47
转自:http://www.open-open.com/lib/view/open1420529336406.html
package com.example.jsondemo;
import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;
impor
- [设计]字体创意设计方法谈
brotherlamp
UIui自学ui视频ui教程ui资料
从古至今,文字在我们的生活中是必不可少的事物,我们不能想象没有文字的世界将会是怎样。在平面设计中,UI设计师在文字上所花的心思和功夫最多,因为文字能直观地表达UI设计师所的意念。在文字上的创造设计,直接反映出平面作品的主题。
如设计一幅戴尔笔记本电脑的广告海报,假设海报上没有出现“戴尔”两个文字,即使放上所有戴尔笔记本电脑的图片都不能让人们得知这些电脑是什么品牌。只要写上“戴尔笔
- 单调队列-用一个长度为k的窗在整数数列上移动,求窗里面所包含的数的最大值
bylijinnan
java算法面试题
import java.util.LinkedList;
/*
单调队列 滑动窗口
单调队列是这样的一个队列:队列里面的元素是有序的,是递增或者递减
题目:给定一个长度为N的整数数列a(i),i=0,1,...,N-1和窗长度k.
要求:f(i) = max{a(i-k+1),a(i-k+2),..., a(i)},i = 0,1,...,N-1
问题的另一种描述就
- struts2处理一个form多个submit
chiangfai
struts2
web应用中,为完成不同工作,一个jsp的form标签可能有多个submit。如下代码:
<s:form action="submit" method="post" namespace="/my">
<s:textfield name="msg" label="叙述:">
- shell查找上个月,陷阱及野路子
chenchao051
shell
date -d "-1 month" +%F
以上这段代码,假如在2012/10/31执行,结果并不会出现你预计的9月份,而是会出现八月份,原因是10月份有31天,9月份30天,所以-1 month在10月份看来要减去31天,所以直接到了8月31日这天,这不靠谱。
野路子解决:假设当天日期大于15号
- mysql导出数据中文乱码问题
daizj
mysql中文乱码导数据
解决mysql导入导出数据乱码问题方法:
1、进入mysql,通过如下命令查看数据库编码方式:
mysql> show variables like 'character_set_%';
+--------------------------+----------------------------------------+
| Variable_name&nbs
- SAE部署Smarty出现:Uncaught exception 'SmartyException' with message 'unable to write
dcj3sjt126com
PHPsmartysae
对于SAE出现的问题:Uncaught exception 'SmartyException' with message 'unable to write file...。
官方给出了详细的FAQ:http://sae.sina.com.cn/?m=faqs&catId=11#show_213
解决方案为:
01
$path
- 《教父》系列台词
dcj3sjt126com
Your love is also your weak point.
你的所爱同时也是你的弱点。
If anything in this life is certain, if history has taught us anything, it is
that you can kill anyone.
不顾家的人永远不可能成为一个真正的男人。 &
- mongodb安装与使用
dyy_gusi
mongo
一.MongoDB安装和启动,widndows和linux基本相同
1.下载数据库,
linux:mongodb-linux-x86_64-ubuntu1404-3.0.3.tgz
2.解压文件,并且放置到合适的位置
tar -vxf mongodb-linux-x86_64-ubun
- Git排除目录
geeksun
git
在Git的版本控制中,可能有些文件是不需要加入控制的,那我们在提交代码时就需要忽略这些文件,下面讲讲应该怎么给Git配置一些忽略规则。
有三种方法可以忽略掉这些文件,这三种方法都能达到目的,只不过适用情景不一样。
1. 针对单一工程排除文件
这种方式会让这个工程的所有修改者在克隆代码的同时,也能克隆到过滤规则,而不用自己再写一份,这就能保证所有修改者应用的都是同一
- Ubuntu 创建开机自启动脚本的方法
hongtoushizi
ubuntu
转载自: http://rongjih.blog.163.com/blog/static/33574461201111504843245/
Ubuntu 创建开机自启动脚本的步骤如下:
1) 将你的启动脚本复制到 /etc/init.d目录下 以下假设你的脚本文件名为 test。
2) 设置脚本文件的权限 $ sudo chmod 755
- 第八章 流量复制/AB测试/协程
jinnianshilongnian
nginxluacoroutine
流量复制
在实际开发中经常涉及到项目的升级,而该升级不能简单的上线就完事了,需要验证该升级是否兼容老的上线,因此可能需要并行运行两个项目一段时间进行数据比对和校验,待没问题后再进行上线。这其实就需要进行流量复制,把流量复制到其他服务器上,一种方式是使用如tcpcopy引流;另外我们还可以使用nginx的HttpLuaModule模块中的ngx.location.capture_multi进行并发
- 电商系统商品表设计
lkl
DROP TABLE IF EXISTS `category`; -- 类目表
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `category` (
`id` int(11) NOT NUL
- 修改phpMyAdmin导入SQL文件的大小限制
pda158
sqlmysql
用phpMyAdmin导入mysql数据库时,我的10M的
数据库不能导入,提示mysql数据库最大只能导入2M。
phpMyAdmin数据库导入出错: You probably tried to upload too large file. Please refer to documentation for ways to workaround this limit.
- Tomcat性能调优方案
Sobfist
apachejvmtomcat应用服务器
一、操作系统调优
对于操作系统优化来说,是尽可能的增大可使用的内存容量、提高CPU的频率,保证文件系统的读写速率等。经过压力测试验证,在并发连接很多的情况下,CPU的处理能力越强,系统运行速度越快。。
【适用场景】 任何项目。
二、Java虚拟机调优
应该选择SUN的JVM,在满足项目需要的前提下,尽量选用版本较高的JVM,一般来说高版本产品在速度和效率上比低版本会有改进。
J
- SQLServer学习笔记
vipbooks
数据结构xml
1、create database school 创建数据库school
2、drop database school 删除数据库school
3、use school 连接到school数据库,使其成为当前数据库
4、create table class(classID int primary key identity not null)
创建一个名为class的表,其有一