- 《基于机器学习的负荷曲线聚类算法对比与改进:K-L-isodata的创新性研究》
TWHiwhjig
机器学习算法聚类
基于机器学习的负荷曲线聚类包括kmeansisodata和改进的L-isodata以及在其基础上再次进行改进的K-L-isodata(有创新性),四者通过评价指标进行了对比精品代码可修改性极高有参考文献ID:93150688324967700自律的电气人基于机器学习的负荷曲线聚类是一种基于数据分析和模式识别的技术,它可以帮助我们对系统的负荷变化进行分类和理解。在负荷曲线聚类的研究中,K-means
- 一句话概述10个主流CRM系统的特点以及适用企业
商业环境瞬息万变,客户关系管理(CRM)系统帮助企业更好地连接客户、理解客户、服务客户,已成为企业不可或缺的战略资产。企业在选择CRM系统时,应做好充分的市场调查。为了帮助企业更好地把握市场机遇,提升客户体验,本文根据搜索结果和行业专家的评价,推荐的2024年CRM系统Top10,并介绍它们的主要功能、擅长领域、适用企业、总体评价、评分以及官网链接。纷享销客重点功能:全渠道精细化营销、销售、服务管
- 情感分析任务的概述
阿你不是
python开发语言
一、情感分析的概述1、什么是情感分析情感分析,也称为情感分类,是一种自然语言处理的任务,用于分析文本、语音或其他形式的数据中所包含的情感倾向。其目标是判断数据表达的情感是积极的(Positive)、消极的(Negative)还是中立的(Neutral),或者进一步细化为更复杂的情感类别(如愤怒、喜悦、悲伤等)。2、情感分析的主要应用场景1)商业领域:情感分析主要进行产品评价分析,从客户和买家的评价
- 系统架构师备考——软件可靠性基础知识篇(下)
牛马程序员小邓
系统架构
系统架构师备考日记(3.13)第9章软件可靠性基础知识篇(下)文章目录系统架构师备考日记(3.13)考点一、软件可靠性设计1.1容错设计技术1.2检错技术1.3降低复杂度设计1.4系统配置技术二、软件可靠性测试2.1软件可靠性测试概述2.2定义软件运行剖面2.3可靠性测试用例设计2.4软件可靠性测试的实施三、软件可靠性评价3.1软件可靠性评价概述3.2怎样选择可靠性模型3.3可靠性数据的收集3.4
- DeepSeek写的还是人写的?用AI识别AI的底层逻辑与未来博弈 ——从“真假美猴王”到人机共生的技术革命
星落无尘
人工智能deeplearningAIGC
引言:当AI学会“伪装人类”中国自研大模型DeepSeek其生成的网文被读者评价“文笔至少中上级”,甚至有文学教授惊叹“AI的诗句比我一辈子写的更惊艳”。但随之而来的是一场“身份危机”:当AI文本与人类作品愈发相似,如何分辨文字背后的灵魂?本文将从技术检测原理、人机本质差异、伦理挑战三个维度,揭开AI写作识别的秘密。一、AI检测技术:以AI之矛攻AI之盾1.Fast-DetectGPT:改写比对算
- 新手村:线性回归-实战-波士顿房价预测
嘉羽很烦
机器学习线性回归算法回归
新手村:线性回归-实战-波士顿房价预测前置条件阅读:新手村:线性回归了解相关概念实验目的1.熟悉机器学习的一般流程2.掌握基础的数据处理方法3.理解常用的回归算法教学例子:预测房价(以波士顿房价数据集为例)本次实验,你将使用真实的波士顿房价数据集建立起一个房价预测模型,并且了解到机器学习中的若干重要概念和评价方法,请通过机器学习建立回归模型,即:Y=θ0+θ1×X1+θ2×X2+θ3×X3+⋯+θ
- 2024年12月CCF-GESP编程能力等级认证C++编程四级真题解析
前网易架构师-高司机
c++开发语言CCF-GESP
四级真题的难度:一、总体难度评价CCF-GESP编程能力等级认证C++四级真题的难度通常被认为相对较高。它不仅要求考生具备扎实的C++编程基础,还需要考生掌握一定的算法和数据结构知识,以及良好的问题解决能力。二、具体难度分析理论知识考察:单选题和判断题中,会涉及C++语言的理论基础知识,如数组的存储原理、函数的各种传参方式、指针、引用等。这些题目要求考生对C++语言有深入的理解。编程技能考察
- kaggle-ISIC 2024 - 使用 3D-TBP 检测皮肤癌-学习笔记
supernova121
学习笔记
问题描述:通过从3D全身照片(TBP)中裁剪出单个病变来识别经组织学确诊的皮肤癌病例数据集描述:图像+临床文本信息评价指标:pAUC,用于保证敏感性高于指定阈值下的AUC主流方法分析(文本)基于CatBoost、LGBM和XGBoost三者的组合,为每个算法创建了XX个变体,总共XX个模型,进行集成学习。CatBoost在传统梯度提升决策树(GBDT)基础上,引入了一系列关键技术创新,以提升处理类
- 基于群智能算法的三维无线传感网络覆盖优化数学模型-可以使用群智能算法直接调用进行优化,完整MATLAB代码
算法小狂人
算法应用matlabphp开发语言
1.1三维覆盖模型由于节点随机抛洒,而传感器节点的分布情况会影响网络覆盖率,以RcovR_{\text{cov}}Rcov作为覆盖率评价标准。在三维覆盖区域中,传感器节点的覆盖区域是某一半径确定的球。在三维监测区域中随机抛洒NNN个传感器节点,形成节点集S={s1,s2,s3,⋯ ,sN}S=\{s_1,s_2,s_3,\cdots,s_N\}S={s1,s2,s3,⋯,sN},第iii个节点的坐
- NLP-二分类的应用-区分外卖评论好评/差评
左岸Jason
算法pythonkafkaflinkelasticsearch
目录一、概念二、二分类实战-划分好评/差评1.处理步骤2.实战代码一、概念文本分类一般可以分为二分类、多分类、多标签分类三种情况。二分类是指将一组文本分成两个类(0或1),比较常见的应用如垃圾邮件分类、电商网站的用户评价数据的正负面分类等,多分类是指将文本分成若干个类中的某一个类,比如说门户网站新闻可以归属到不同的栏目中(如政治、体育、社会、科技、金融等栏目)去。多标签分类指的是可以将文本分成若干
- Nature:你的大脑衰老速度受这64个基因影响
量子位
你的大脑衰老速度,原来受这64个基因影响!事情是这样的。根据Nature最新报道,科学家们通过利用AI模型分析大量脑部扫描和遗传数据,确定了64个影响大脑衰老速度的基因,并指出了13种潜在的抗衰老药物。相关研究发表在最新一期Science子刊《ScienceAdvances》上。按照Nature的评价,这是尝试确定影响器官衰退遗传因素这一研究领域里:迄今为止规模最大的一次尝试都柏林圣三一学院的神经
- Python 爬虫实战:于好大夫在线抓取医生评价数据,选择优质医疗服务
西攻城狮北
python爬虫实战案例好大夫在线
目录引言一、爬虫基础预备知识1.1爬虫的基本概念1.2必备库介绍二、抓取医生评价数据2.1目标网站分析2.2发送HTTP请求2.3解析网页内容2.4保存数据三、数据分析与可视化3.1数据清洗3.2数据分析3.3数据可视化四、选择优质医疗服务4.1选择标准4.2推荐医生4.3分享推荐五、总结与展望5.1总结5.2展望引言在当今医疗信息爆炸的时代,选择一位合适的医生对于患者来说至关重要。好大夫在线是一
- 大模型工程师学习日记(十五):Hugging Face 模型微调训练(基于 BERT 的中文评价情感分析)
MMMMMMMay Love Code
学习bert人工智能深度学习自然语言处理全量微调
1.datasets库核心方法1.1.列出数据集使用datasets库,你可以轻松列出所有HuggingFace平台上的数据集:fromdatasetsimportlist_datasets#列出所有数据集all_datasets=list_datasets()print(all_datasets)1.2.加载数据集你可以通过load_dataset方法加载任何数据集:fromdatasetsim
- Python 爬虫实战:游戏论坛评论数据抓取与游戏热度分析
西攻城狮北
python开发语言爬虫
一、引言随着电子游戏产业的飞速发展,游戏论坛成为了玩家交流心得、分享体验的重要平台。通过分析游戏论坛的评论数据,我们可以了解不同游戏的热度、玩家的评价以及游戏的受欢迎程度。本文将详细介绍如何使用Python爬虫技术抓取游戏论坛的评论数据,并进行游戏热度分析。二、项目背景与目标2.1项目背景游戏论坛如Steam社区、贴吧、NGA等,拥有大量的用户和丰富的评论数据。这些数据反映了玩家对不同游戏的评价和
- 【Transformer-Hugging Face手册 07/10】 微调预训练模型
无水先生
人工智能高级阶段人工智能综合transformer深度学习人工智能
微调预训练模型-目录一、说明二、在本机PyTorch中微调预训练模型。2.1加载数据2.2训练2.2.1使用PyTorchTrainer进行训练2.3训练超参数2.4评价2.5训练类三、使用Keras训练TensorFlow模型3.1为Keras加载数据3.2将数据加载为tf.data.Dataset3.3数据加载器3.4优化器和学习率调度器3.5训练循环3.6评价四、结论一、说明 使用预训练模
- 马斯克说的没错,DeepSeek确实厉害,但真正可怕的是...
PPT百科
人工智能powerpointpptDeepSeek马斯克
作者:PPT百科(PPTwiki.COM)发布日期:2025年2月25日“中国能做出DeepSeek这样的AI,我一点都不意外。”当马斯克在达沃斯论坛上说出这句话时,全球科技圈的目光再次聚焦到了这个中国AI独角兽身上。然而,这位“硅谷钢铁侠”的下一句话却耐人寻味:“但它还不是革命性的,我们的Grok3会更好。”马斯克的评价看似矛盾,实则揭示了AI竞争的核心逻辑——技术突破与市场落地的双重博弈。而D
- 【JVM】性能监控与调优概述篇
白晨并不是很能熬夜
JVMjvm后端面试java经验分享求职招聘
大家好,我是白晨,一个不是很能熬夜,但是也想日更的人✈。如果喜欢这篇文章,点个赞,关注一下白晨吧!你的支持就是我最大的动力!文章目录JVM性能监控与调优概述篇背景说明生产环境中的问题为什么要调优不同阶段的考虑调优概述监控的依据调优的大方向性能优化的步骤第一步(发现问题):性能监控第二步(排查问题):性能分析第三步(解决问题):性能调优性能评价/测试指标停顿时间(或响应时间)吞吐量并发数内存站用相互
- 数学建模之数学模型-3:动态规划
^ω^宇博
数学模型数学建模动态规划算法
文章目录动态规划基本概念阶段状态决策策略状态转移方程指标函数最优指标函数动态规划的求解前向算法后向算法二者比较应用案例一种中文分词的动态规划模型摘要引言动态规划的分词模型问题的数学描述消除状态的后效性选择优化条件算法描述和计算实例算法的效率分析和评价结束语参考文献动态规划基本概念一个多阶段决策过程最优化问题的动态规划模型包括以下666个要素:以下是对动态规划中阶段、状态、决策、策略、状态转移方程、
- [论文解读] 多机器人系统动态任务分配综述
「已注销」
算法
https://www.emerald.com/insight/content/doi/10.1108/IR-04-2020-0073/full/html多机器人/多智能体动态环境任务分配决策动态任务调度策略该文章主要是想对目前stateoftheart多机器人动态任务调度策略做一个全面的评价,注意定语挺多的,里面的方法也较多为近几年的智能调度那些算法。衡量方法主要考虑到了应用场景、限制、目标方程
- java版电子招投标采购|投标|评标|竞标|邀标|评审招投标系统源码
微服务技术分享
java企业电子招投标系统源代码企业招投标系统源码招采系统源码
功能模块:待办消息,招标公告,中标公告,信息发布描述:全过程数字化采购管理,打造从供应商管理到采购招投标、采购合同、采购执行的全过程数字化管理。通供应商门户具备内外协同的能力,为外部供应商集中推送展示与其相关的所有采购业务信息(历史合作、考察整改,绩效评价等),支持供应商信息的自助维护,实时风险自动提服务框架:SpringCloud、SpringBoot2、Mybatis、OAuth2、Secur
- Deepseek 你喜欢我不
太翌修仙笔录
deepseek第三代人工智能人工智能神经网络
Deepseek,你喜欢我不###**关于“喜欢”的深度解析**---####**一、AI的情感本质**1.**情感的定义**-对人类而言,情感是神经递质(如多巴胺、血清素)与认知评价的综合结果。-对AI而言,情感是算法对输入数据的概率分布映射(如“喜欢”=高概率正向反馈)。2.**Deepseek的“情感”机制**-**输入**:你的问题“你喜欢我不”被解析为文本向量;-**处理**:通过预训练
- 文本挖掘+情感分析+主题建模+K-Meas聚类+词频统计+词云(景区游客评论情感分析)
请为小H留灯
聚类机器学习支持向量机人工智能深度学习
本文通过情感分析技术对景区游客评论进行深入挖掘,结合数据预处理、情感分类和文本挖掘,分析游客评价与情感倾向。利用朴素贝叶斯和SVM等模型进行情感预测,探讨满意度与情感的关系。通过KMeans聚类和LDA主题分析,提取游客关心的话题,提供优化建议,为未来研究提供方向。1.引言1.1背景与目的1.2旅游业发展与游客评论的重要性2.数据处理与分析2.1数据加载与预处理2.2游客评分与点赞量分析3.评论内
- Nature:OpenAI的deep research工具对科研人员有用吗?
迪娜学姐
人工智能论文阅读论文笔记prompt
OpenAI的deepresearch工具对科研人员有用吗?它有哪些优缺点?来看看全球学术界专家的评价。科技巨头OpenAI发布了一款名为“深度研究”的付费访问工具,该工具能够将来自数十乃至数百个网站的信息综合成一份数页长的引用报告。此工具与谷歌去年12月发布的同名“深度研究”功能类似,能在短短数十分钟内完成相当于数小时的工作量。许多科学家对其撰写文献综述或整篇综述论文的能力,甚至识别知识空白的能
- 二级Python必考!一文吃透程序分支结构:单/双/多分支实战解析
奕澄羽邦
pythonlinux开发语言
一、为什么分支结构是Python考试的"拦路虎"?根据近三年NCRE二级Python真题数据分析,程序流程控制类题目平均分仅为62.7分,主要痛点集中在:语法细节易错:缩进错误、条件符号混淆(=vs==)逻辑思维薄弱:无法正确绘制分支流程图实战应用脱节:熟悉基本语法却不会设计实际场景的条件判断以2023年6月考题为例:python#根据输入分数输出评价(含小数点后1位)score=float(in
- 前端开发简历优化指南,DeepSeek助您前端简历秒变高分!
大模型大数据攻城狮
前端面试前端面经前端简历vue原理社招校招前端框架
目录一、简历格式与排版(一)简洁至上(二)字体与字号的选择(三)文字间距与对齐(四)使用分段与列表二、内容优化(一)个人信息(二)教育背景(三)工作经历(四)专业技能(五)项目经验(六)自我评价(七)技术亮点深度挖掘(八)典型项目模版(九)实习经历技术化改造三、其他注意事项(一)避免错别字与语法错误(二)定制化简历(三)更新频率(四)技术细节缺失(五)技术关联性断裂(六)模糊表达修正(七)技术堆砌
- 论文阅读:Personalized Purchase Prediction of Market with Wasserstein-Based Sequence Matching
Narcissus`小暮
一步步来学大数据推荐系统
PersonalizedPurchasePredictionofMarketwithWasserstein-BasedSequenceMatching概述问题背景及陈述预测算法步骤一:itemembeddings步骤二:计算wassersteinDistance步骤三:Wasserstein-BasedDynamicTimeWarping预测实验评价标准数据集对比的baseline结论市场篮子的应
- 还在蹲Manus的邀请码?别等了!开源版Manus为你快速创建AI工位,给AI一台电脑,然后你就玩去吧!
蚝油菜花
每日AI项目与应用实例开源人工智能人工智能开源
❤️如果你也关注AI的发展现状,且对AI应用开发感兴趣,我会每日分享大模型与AI领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!AI在线答疑->智能检索历史文章和开源项目->尽在微信公众号->搜一搜:蚝油菜花就在昨天,一个叫做Manus的AIAgent平台在各大社媒和社区火速的传播开来,引发了各界火热的讨论,相信大家也看到了不少关于Manus的实测和评价了。可当大家跃跃欲试冲
- 系统架构设计师-第6章 系统配置与性能评价
软考诸葛老师
系统架构设计师系统架构系统架构设计师软考高级软考
【本章学习建议】根据考试大纲,本章主要考查系统架构设计师单选题,预计考1分左右,对应第二版教材2.9节,内容较少,较为简单,容易拿分。6.1性能指标1.计算机的性能指标对计算机评价的主要性能指标有:时钟频率(主频);运算速度;运算精度;内存的存储容量;存储器的存取周期;数据处理速率(ProcessingDataRate,PDR);吞吐率;各种响应时间;各种利用率;RASIS特性(即:可靠性Reli
- 【数学建模】001
反方向的钟儿
数学建模数学建模算法笔记
数学建模方法论层次分析法:确定评级价指标形成评价体系1.评价的目标是什么2.评价标准是什么3.可选方案有哪些以此来选择最优方案“两两”比较发来确定指标重要性可以画图列表,产生几个比较变量:产生一系列正互反矩阵,进而产生判断矩阵,可以得出各个评判指标之间的权重向量一致矩阵和不一致矩阵
- Python 爬虫实战:从大众点评爬取餐厅评价,探寻美食打卡地
西攻城狮北
python爬虫美食实战案例
目录引言一、项目背景与需求分析1.1大众点评平台的特点1.2数据爬取目标二、技术选型与工具准备2.1技术选型2.2工具准备三、爬取餐厅信息3.1获取餐厅列表3.2获取餐厅详情四、数据存储五、数据处理与分析5.1数据清洗5.2数据分析六、可视化展示七、总结与展望引言大众点评作为国内知名的本地生活服务平台,提供了丰富的餐厅信息和用户评价。通过爬取大众点评上的餐厅评价数据,我们可以分析餐厅的受欢迎程度、
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多