25文章解读与程序——中国电机工程学报EI\CSCD\北大核心《多源动态最优潮流的分布鲁棒优化方法》已提供下载资源

25号资源-源程序:论文可在知网下载《多源动态最优潮流的分布鲁棒优化方法》本人博客有解读资源-CSDN文库icon-default.png?t=N7T8https://download.csdn.net/download/LIANG674027206/88753735

下载资源链接

可参考论文:

多源动态最优潮流的分布鲁棒优化方法_竺如洁

A__state-independent linear power flow model with accurate__estimation of voltage magnitude

2019-(竺如洁)Wasserstein Metric Based Distributionally Robust  Approximate Framework For Unit

摘要:针对大规模清洁能源接入电网引起的系统鲁棒性和经 济性协调问题,提出含风–光–水–火多种能源的分布鲁棒动 态最优潮流模型。采用分布鲁棒优化方法将风光不确定性描 述为包含概率分布信息的模糊不确定集。将模糊不确定集构 造为一个以风光预测误差经验分布为中心,以 Wasserstein 距离为半径的 Wasserstein 球。在满足风光预测误差服从模 糊不确定集中极端概率分布情况下最小化运行费用。由于梯 级水电厂模型为混合整数模型,为了提高计算效率,将交流 潮流近似为解耦线性潮流。最后,某 703 节点实际电力系统的仿真结果表明,所提方法可以通过控制样本大小和 Wasserstein 半径置信度的方法有效平衡系统的鲁棒性与经济性。

这段摘要描述了一种解决清洁能源大规模接入电网时所引起的系统鲁棒性和经济性协调问题的方法。以下是对摘要中各部分的解读:

  1. 问题描述:

    • 背景: 随着大规模清洁能源(风、光、水、火等)接入电网,引发了系统鲁棒性和经济性协调的问题。
    • 目标: 提出一种分布鲁棒动态最优潮流模型,旨在有效解决这些问题。
  2. 建模方法:

    • 多种能源: 模型考虑了多种能源,包括风能、光能、水能和火能。
    • 分布鲁棒优化: 使用分布鲁棒优化方法,将风光不确定性建模为包含概率分布信息的模糊不确定集。
    • 模糊不确定集构造: 将模糊不确定集构造为以风光预测误差经验分布为中心,以Wasserstein距离为半径的Wasserstein球。
  3. 优化目标和约束:

    • 在满足风光预测误差服从模糊不确定集中极端概率分布情况下,最小化系统运行费用。
  4. 模型优化和计算效率提升:

    • 混合整数模型: 由于梯级水电厂模型为混合整数模型,可能涉及离散决策变量。
    • 近似交流潮流: 为了提高计算效率,将交流潮流近似为解耦线性潮流。
  5. 仿真结果验证:

    • 在某703节点实际电力系统上进行了仿真,以验证所提出方法的有效性。
    • 结果表明,通过控制样本大小和Wasserstein半径置信度,可以有效平衡系统的鲁棒性与经济性。

总体而言,该方法结合了多种清洁能源,采用分布鲁棒优化方法,通过模糊不确定集的建模以及Wasserstein球的构造,以最小化运行费用为目标,有效解决了清洁能源接入电网时的系统鲁棒性和经济性协调问题。通过对梯级水电厂模型的合理处理,还提高了计算效率。

部分代码展示:

clc,clear
close all
tic
%% 导入ieee118节点网络
caseName = case118;
%% 参数
iv = 65; %光伏接入节点
iw = 25; %风电接入节点
is = [31;54;80]; %水电接入节点
ih = [10;12;26;46;49;59;61;66;80;87;89;100;103;111]; %火电接入节点
Horizon = 24;
nbus = size(caseName.bus, 1);
K=5;
ngen=14;
nv = 1;
nw = 1;
ns=3;
L_t=[1 0.97 0.96 0.95 0.96 0.98 0.99 1.02 1.05 1.08 1.1 1.12 1.09 1.08 1.07 1.06 1.08 1.1 1.12 1.13 1.1 1.08 1.04 1.01];%时序性负荷系数
L_Horizon=repmat(L_t,nbus,1).*repmat(caseName.bus(:,3),1,Horizon);
load fljl;
load gfjl;
waw=100.*fljl(1:K,:);
wav=10.*gfjl(1:K,:);
wws=max(waw);%风电上限
wwx=min(waw);%风电下限
wvs=max(wav);%光伏上限
wvx=min(wav);%光伏下限
dg=ones(ngen,1);%火电机组调节误差的调节费用
%计算参数ee
muw=mean(waw);
muv=mean(wav);
ee1=newton1(muw,0.95,K,waw);
ee2=newton1(muv,0.95,K,wav);
% syms rho;
% lina=0;
% for ii=1:K
%     lina=lina+exp(rho*(norm(waw(ii,:)-muw))^2);
% end
% Dd=2*(1/2/rho*(1+log(1/K*lina)))^0.5;

%电价
price=[0.3177.*ones(1,6),0.6062.*ones(1,2),0.8948.*ones(1,3),0.6062.*ones(1,1),0.3177.*ones(1,1),0.6062.*ones(1,1),0.8948.*ones(1,7),0.6062.*ones(1,2),0.3177.*ones(1,1)];%电价
%% 决策变量
x_theta = sdpvar(nbus, Horizon,'full');%网络角度
V = sdpvar(nbus, Horizon,'full');%网络节点电压
x_P_h = sdpvar(ngen, Horizon,'full');%风光调整前火电
x_P_s = sdpvar(ns, Horizon,'full');%风光调整前水电
% x_P_hz = sdpvar(ngen, Horizon,'full');
% x_P_sz = sdpvar(ns, Horizon,'full');
x_P_w = sdpvar(nw, Horizon,'full');
x_P_v = sdpvar(nv, Horizon,'full');
ww = sdpvar(1,Horizon,'full');%风力偏差
wp = sdpvar(1,Horizon,'full');%光伏偏差
wwp = sdpvar(1,Horizon,'full');%风光总偏差

alfah = sdpvar(ngen,Horizon,'full');%火电机组参与因子
alfas = sdpvar(ns,Horizon,'full');%水电机组参与因子
rgmax = 50.*ones(ngen, Horizon);%火电旋转备用容量
rgmin = 10.*ones(ngen, Horizon);%火电旋转备用容量
rsmax = 50.*ones(ns, Horizon);%水电旋转备用容量
rsmin = 10.*ones(ns, Horizon);%水电旋转备用容量
rhog = 2.*ones(ngen, Horizon);
rhos = 3.*ones(ns, Horizon);
k1 = sdpvar(1);%对偶变量
k2 = sdpvar(1);%对偶变量

效果展示:

25文章解读与程序——中国电机工程学报EI\CSCD\北大核心《多源动态最优潮流的分布鲁棒优化方法》已提供下载资源_第1张图片

25号资源-源程序:论文可在知网下载《多源动态最优潮流的分布鲁棒优化方法》本人博客有解读资源-CSDN文库icon-default.png?t=N7T8https://download.csdn.net/download/LIANG674027206/88753735

下载资源链接

你可能感兴趣的:(论文与完整源程序,代码)