这是我的第一篇博客,希望大神们批评指正。
首先介绍以下什么是哈夫曼树(来自百度百科)
哈夫曼树─即最优二叉树,带权路径长度最小的二叉树,经常应用于数据压缩。 在计算机信息处理中,“哈夫曼编码”是一种一致性编码法(又称“熵编码法”),用于数据的无损耗压缩。这一术语是指使用一张特殊的编码表将源字符(例如某文件中的一个符号)进行编码。这张编码表的特殊之处在于,它是根据每一个源字符出现的估算概率而建立起来的(出现概率高的字符使用较短的编码,反之出现概率低的则使用较长的编码,这便使编码之后的字符串的平均期望长度降低,从而达到无损压缩数据的目的)。
构造哈夫曼树的主要思想:
构造哈夫曼树非常简单,将所有的节点放到一个队列中,用一个节点替换两个频率最低的节点,新节点的频率就是这两个节点的频率之和。这样,新节点就是两个被替换节点的父节点了。如此循环,直到队列中只剩一个节点(树根)。
这里用到了最小优先队列。
我这里用STL来实现。(这里有优先队列的介绍)
template<typename T> struct cmp { bool operator()(TreeNode<T>* t1, TreeNode<T>* t2) { return !(*t1 < *t2); } };
优先队列的定义:
priority_queue<TreeNode*,vector<TreeNode* >,cmp > pri_que;
哈夫曼树节点结构
template<typename T> class TreeNode { public: TreeNode():pfather(NULL),plchild(NULL),prchild(NULL) { } T data; TreeNode *pfather; TreeNode *plchild; TreeNode *prchild; bool operator < (const TreeNode& rhs) { return data < rhs.data; } };
构造哈夫曼树
每次从最小优先队列取头两个节点,合并后放回最小优先队列,如此重复。
template<typename T> TreeNode<T>* MakeHuffmanTree(T* begin, T* end) //构造哈夫曼树 { priority_queue<TreeNode<T>*,vector<TreeNode<T>* >,cmp<T> > pri_que; T *iter = begin; TreeNode<T>* pNode; TreeNode<T>* pf = NULL; while(iter != end) { pNode = new TreeNode<T>; pNode->data = *iter++; pNode->pfather = pf; pri_que.push(pNode); } TreeNode<T>* plchild; TreeNode<T>* prchild; while(pri_que.size() > 1)//取两个小的合并 { plchild = pri_que.top(); pri_que.pop(); prchild = pri_que.top(); pri_que.pop(); pNode = new TreeNode<T>; pNode->plchild = plchild; pNode->prchild = prchild; pNode->data = plchild->data + prchild->data; pri_que.push(pNode); } pNode = pri_que.top(); pri_que.pop(); return pNode; }
构造哈夫曼树这个函数的参数是一个结构体,保存着对应字符,其频率,编码值。
重载它的+运算符,为了合并时的+运算(只是频率相加)。
到此为止,已经可以把哈夫曼树生成出来了。
template<typename T> struct mydata { mydata(){} mydata(int i):freq(i) { } string coded; int freq; T data; bool operator<(const mydata& rhs) { return freq < rhs.freq; } mydata operator+(mydata& rhs) { return mydata(freq + rhs.freq); } };
我们可以通过DFS将每个叶子节点的路径记录下来(用一个全局变量数组path),然后得到它的编码。
当发现当前节点是叶子节点,就把当前的路径赋值至该叶子节点的编码属性(coded)。
const int MAXLEN = 20; char path[MAXLEN] = {0}; template<typename T> void DFS(T* root,int deep = -1, char a = '-') //DFS 得到叶子节点的编码 { if(root == NULL) return; if(a != '-') path[deep] = a; if(root->plchild == NULL || root->prchild == NULL)//leaf (root->data).coded = string(path,path + deep + 1); if(root->plchild != NULL) DFS(root->plchild, deep + 1, '0'); if(root->prchild != NULL) DFS(root->prchild, deep + 1, '1'); }
这样整个哈夫曼编码工作已经完成,为了查看我们的编码结果,我们可以用BFS跟DFS来看到我们的结果。在这里我选择了BFS。
当遍历到叶子节点,就将其编码属性(coded)和其对应字符输出。
template<typename T,typename U> void BFS(T* root, mydata<U>* data) //BFS 将叶子节点的编码,提到data指向的数据 { queue<T*> que; que.push(root); T* pT = NULL; while(!que.empty()) { pT = que.front(); //cout<<pT->data.freq<<endl; que.pop(); if(pT->plchild != NULL) que.push(pT->plchild); if(pT->prchild != NULL) que.push(pT->prchild); if(pT->plchild == NULL || pT->prchild == NULL)// leaf 提取叶子节点的编码 { //cout<<(pT->data).data<<":"<<(pT->data).coded<<endl; mydata<U>* pd = data; while((pT->data).data != pd->data) pd++; assert(pd->data == (pT->data).data); pd->coded = (pT->data).coded; } } }
测试驱动代码
mydata<char> *pdata = new mydata<char>[4]; pdata[0].data = 'a'; pdata[0].freq = 7; pdata[1].data = 'b'; pdata[1].freq = 5; pdata[2].data = 'c'; pdata[2].freq = 2; pdata[3].data = 'd'; pdata[3].freq = 4; TreeNode<mydata<char> >* pihuffmanTree = MakeHuffmanTree(pdata, pdata + 4); DFS(pihuffmanTree); BFS(pihuffmanTree);
为了更方便的使用我将这些封装到一个类里面。
template<typename T> class Huffman { public: void Coded(string& coded);//传入待输出的编码 void DeCode(const string& codedstr,string& decodestr);//输入待解码字符串,输出解码字符串 void InputData(T* begin,T* end);//传入数据 private: string FindVal(char c); void m_CalcFreq(T* begin, T* end);//计算输入数据的频率 TreeNode<mydata<T> > *root;//huffman根节点 mydata<T>* data; int data_size; T* m_begin;//保存原始数据的开始与结束的位置 T* m_end; //string codedstr; };
输入数据并计算其频率。
用map容器来统计输入字符每个出现的个数。
template<typename T> void Huffman<T>::InputData(T* begin, T* end) { this->m_begin = begin; this->m_end = end; m_CalcFreq(begin, end); } template<typename T> void Huffman<T>::m_CalcFreq(T* begin, T* end) { int len = end - begin; //data_size = len; if(len == 0) return; map<T,int> countMap; map<T,int>::iterator mapIter = countMap.begin(); T *pT = begin; while(pT != end) { mapIter = countMap.find(*pT); if(mapIter != countMap.end())//在map里有没有字符*iter ++mapIter->second; else { countMap.insert(make_pair(*pT,1)); } pT++; } data_size = countMap.size(); data = new mydata<T>[data_size]; int i = 0; for (mapIter = countMap.begin(); mapIter != countMap.end(); ++mapIter) { data[i].data = mapIter->first; data[i].freq = mapIter->second; i++; } }
编码
template<typename T> void Huffman<T>::Coded(string& coded) { root = MakeHuffmanTree(data,data + data_size); DFS(root); BFS(root,data); cout<<"code:"<<endl; for (int i = 0; i < data_size; ++i) { cout<<data[i].data<<":"<<data[i].coded<<endl; } T *begin = m_begin; while (begin != m_end) { coded += FindVal(*begin); begin++; } //string subcode = }
解码
template<typename T> void Huffman<T>::DeCode(const string& codedstr,string& decodestr) { string::const_iterator iter = codedstr.begin(); TreeNode<mydata<T> >* curNode = root; while (iter != codedstr.end()) { if (curNode->plchild == NULL || curNode->prchild == NULL) { decodestr += (curNode->data).data; curNode = root; continue; } if (*iter == '0') curNode = curNode->plchild; if(*iter == '1') curNode = curNode->prchild; iter++; } }
测试驱动程序
char *pmystr = "cbcddddbbbbaaaaaaa"; Huffman<char> h; h.InputData(pmystr, pmystr + 18); cout<<"originstr: "<<pmystr<<endl; string coded; h.Coded(coded); cout<<"coded: "<<coded<<endl; string decode; h.DeCode(coded,decode); cout<<"decode: "<<decode<<endl;
完整程序(环境:VS2012)
#include <iostream> //#include <algorithm> #include <queue> #include <string> #include <vector> #include <cassert> #include <map> using namespace std; template<typename T> class TreeNode { public: TreeNode():pfather(NULL),plchild(NULL),prchild(NULL) { } T data; TreeNode *pfather; TreeNode *plchild; TreeNode *prchild; bool operator < (const TreeNode& rhs) { return data < rhs.data; } }; template<typename T> struct cmp { bool operator()(TreeNode<T>* t1, TreeNode<T>* t2) { return !(*t1 < *t2); } }; template<typename T> TreeNode<T>* MakeHuffmanTree(T* begin, T* end) //构造哈夫曼树 { priority_queue<TreeNode<T>*,vector<TreeNode<T>* >,cmp<T> > pri_que; T *iter = begin; TreeNode<T>* pNode; TreeNode<T>* pf = NULL; while(iter != end) { pNode = new TreeNode<T>; pNode->data = *iter++; pNode->pfather = pf; pri_que.push(pNode); } TreeNode<T>* plchild; TreeNode<T>* prchild; while(pri_que.size() > 1)//取两个小的合并 { //cout<<static_cast<TreeNode<T>* >(pri_que.top())->data<<endl; //pri_que.pop(); plchild = pri_que.top(); pri_que.pop(); prchild = pri_que.top(); pri_que.pop(); pNode = new TreeNode<T>; pNode->plchild = plchild; pNode->prchild = prchild; pNode->data = plchild->data + prchild->data; pri_que.push(pNode); } pNode = pri_que.top(); pri_que.pop(); return pNode; } template<typename T> struct mydata { mydata(){} mydata(int i):freq(i) { } string coded; int freq; T data; bool operator<(const mydata& rhs) { return freq < rhs.freq; } mydata operator+(mydata& rhs) { return mydata(freq + rhs.freq); } }; template<typename T,typename U> void BFS(T* root, mydata<U>* data) //BFS 将叶子节点的编码,提到data指向的数据 { queue<T*> que; que.push(root); T* pT = NULL; while(!que.empty()) { pT = que.front(); //cout<<pT->data.freq<<endl; que.pop(); if(pT->plchild != NULL) que.push(pT->plchild); if(pT->prchild != NULL) que.push(pT->prchild); if(pT->plchild == NULL || pT->prchild == NULL)// leaf 提取叶子节点的编码 { //cout<<(pT->data).data<<":"<<(pT->data).coded<<endl; mydata<U>* pd = data; while((pT->data).data != pd->data) pd++; assert(pd->data == (pT->data).data); pd->coded = (pT->data).coded; } } } const int MAXLEN = 20; char path[MAXLEN] = {0}; template<typename T> void DFS(T* root,int deep = -1, char a = '-') //DFS 得到叶子节点的编码 { if(root == NULL) return; if(a != '-') path[deep] = a; if(root->plchild == NULL || root->prchild == NULL)//leaf (root->data).coded = string(path,path + deep + 1); if(root->plchild != NULL) DFS(root->plchild, deep + 1, '0'); if(root->prchild != NULL) DFS(root->prchild, deep + 1, '1'); } template<typename T> class Huffman { public: void Coded(string& coded); void DeCode(const string& codedstr,string& decodestr); void InputData(T* begin,T* end); private: string FindVal(char c); void m_CalcFreq(T* begin, T* end); TreeNode<mydata<T> > *root; mydata<T>* data; int data_size; T* m_begin; T* m_end; //string codedstr; }; template<typename T> void Huffman<T>::InputData(T* begin, T* end) { this->m_begin = begin; this->m_end = end; m_CalcFreq(begin, end); } template<typename T> void Huffman<T>::m_CalcFreq(T* begin, T* end) { int len = end - begin; //data_size = len; if(len == 0) return; map<T,int> countMap; map<T,int>::iterator mapIter = countMap.begin(); T *pT = begin; while(pT != end) { mapIter = countMap.find(*pT); if(mapIter != countMap.end()) ++mapIter->second; else { countMap.insert(make_pair(*pT,1)); } pT++; } data_size = countMap.size(); data = new mydata<T>[data_size]; int i = 0; for (mapIter = countMap.begin(); mapIter != countMap.end(); ++mapIter) { data[i].data = mapIter->first; data[i].freq = mapIter->second; i++; } } template<typename T> void Huffman<T>::Coded(string& coded) { root = MakeHuffmanTree(data,data + data_size); DFS(root); BFS(root,data); cout<<"code:"<<endl; for (int i = 0; i < data_size; ++i) { cout<<data[i].data<<":"<<data[i].coded<<endl; } T *begin = m_begin; while (begin != m_end) { coded += FindVal(*begin); begin++; } //string subcode = } template<typename T> void Huffman<T>::DeCode(const string& codedstr,string& decodestr) { string::const_iterator iter = codedstr.begin(); TreeNode<mydata<T> >* curNode = root; while (iter != codedstr.end()) { if (curNode->plchild == NULL || curNode->prchild == NULL) { decodestr += (curNode->data).data; curNode = root; continue; } if (*iter == '0') curNode = curNode->plchild; if(*iter == '1') curNode = curNode->prchild; iter++; } } template<typename T> string Huffman<T>::FindVal(char c) { for (int i = 0; i < data_size ; ++i) { if (c != data[i].data) continue; return data[i].coded; } return string(); } int main() { //mydata<char> *pdata = new mydata<char>[4]; //pdata[0].data = 'a'; //pdata[0].freq = 7; //pdata[1].data = 'b'; //pdata[1].freq = 5; //pdata[2].data = 'c'; //pdata[2].freq = 2; //pdata[3].data = 'd'; //pdata[3].freq = 4; ////int a[12]={14,10,56,7,83,22,36,91,3,47,72,0}; //TreeNode<mydata<char> >* pihuffmanTree = MakeHuffmanTree(pdata, pdata + 4); //DFS(pihuffmanTree); //BFS(pihuffmanTree); //string str = "cbcddddbbbbaaaaaaa"; char *pmystr = "cbcddddbbbbaaaaaaa"; Huffman<char> h; h.InputData(pmystr, pmystr + 18); cout<<"originstr: "<<pmystr<<endl; string coded; h.Coded(coded); cout<<"coded: "<<coded<<endl; string decode; h.DeCode(coded,decode); cout<<"decode: "<<decode<<endl; return 0; }