1、前言
一直以来,用过多线程,但是,在某些细节方面总是不注意,现特将一些基本知识点进行归纳汇总,以备后面的使用。
2、Java多线程的实现方式
JAVA多线程实现方式主要有三种:继承Thread类、实现Runnable接口、使用ExecutorService、Callable、Future实现有返回结果的多线程。其中前两种方式线程执行完后都没有返回值,只有最后一种是带返回值的。
2.1 继承Thread类实现多线程 继承Thread类的方法尽管被我列为一种多线程实现方式,但Thread本质上也是实现了Runnable接口的一个实例,它代表一个线程的实例,并且,启动线程的唯一方法就是通过Thread类的start()实例方法。
publicclassMyThreadextendsThread {
publicvoidrun() {
System.out.println("MyThread.run()");
}
}
启动线程如下:
MyThread myThread1 =newMyThread();
myThread1.start();
2.2、实现Runnable接口方式实现多线程
如果自己的类已经extends另一个类,就无法直接extends Thread,此时,必须实现一个Runnable接口,如下:
publicclassMyThreadextendsOtherClassimplementsRunnable {
publicvoidrun() {
System.out.println("MyThread.run()");
}
}
为了启动MyThread,需要首先实例化一个Thread,并传入自己的MyThread实例:
MyThread myThread =newMyThread();
Thread thread = newThread(myThread);
thread.start();
2.3、使用ExecutorService、Callable、Future实现有返回结果的多线程
ExecutorService、Callable、Future这个对象实际上都是属于Executor框架中的功能类。想要详细了解Executor框架的可以访问点击打开链接,这里面对该框架做了很详细的解释。返回结果的线程是在JDK1.5中引入的新特征,确实很实用,有了这种特征我就不需要再为了得到返回值而大费周折了,而且即便实现了也可能漏洞百出。
可返回值的任务必须实现Callable接口,类似的,无返回值的任务必须Runnable接口。执行Callable任务后,可以获取一个Future的对象,在该对象上调用get就可以获取到Callable任务返回的Object了,再结合线程池接口ExecutorService就可以实现传说中有返回结果的多线程了。下面提供了一个完整的有返回结果的多线程测试例子,在JDK1.5下验证过没问题可以直接使用。
3、多线程的并发
3.1 volatile关键词
用来对共享变量的访问进行同步,上一次写入操作的结果对下一次读取操作是肯定可见的。(在写入volatile变量值之后,CPU缓存中的内容会被写回内存;在读取volatile变量时,CPU缓存中的对应内容会被置为失效,重新从主存中进行读取),volatile不使用锁,性能优于synchronized关键词。
3.2、final关键词 final关键词声明的域的值只能被初始化一次,一般在构造方法中初始化。。(在多线程开发中,final域通常用来实现不可变对象)
当对象中的共享变量的值不可能发生变化时,在多线程中也就不需要同步机制来进行处理,故在多线程开发中应尽可能使用不可变对象。
另外,在代码执行时,final域的值可以被保存在寄存器中,而不用从主存中频繁重新读取。
3.3、java基本类型的原子操作
1)基本类型,引用类型的复制引用是原子操作;(即一条指令完成)
2)long与double的赋值,引用是可以分割的,非原子操作;
3)要在线程间共享long或double的字段时,必须在synchronized中操作,或是声明成volatile
4 Java多线程的同步方式
4.1、synchronized关键字
方法或代码块的互斥性来完成实际上的一个原子操作。(方法或代码块在被一个线程调用时,其他线程处于等待状态)
所有的Java对象都有一个与synchronzied关联的监视器对象(monitor),允许线程在该监视器对象上进行加锁和解锁操作。
a、静态方法:Java类对应的Class类的对象所关联的监视器对象。
b、实例方法:当前对象实例所关联的监视器对象。
c、代码块:代码块声明中的对象所关联的监视器对象。
注:当锁被释放,对共享变量的修改会写入主存;当获得锁,CPU缓存中的内容被置为无效。编译器在处理synchronized方法或代码块,不会把其中包含的代码移动到synchronized方法或代码块之外,从而避免了由于代码重排而造成的问题。
4.2Object类的wait、notify和notifyAll方法
生产者和消费者模式,判断缓冲区是否满来消费,缓冲区是否空来生产的逻辑。如果用while 和 volatile也可以做,不过本质上会让线程处于忙等待,占用CPU时间,对性能造成影响。
wait: 将当前线程放入,该对象的等待池中,线程A调用了B对象的wait()方法,线程A进入B对象的等待池,并且释放B的锁。(这里,线程A必须持有B的锁,所以调用的代码必须在synchronized修饰下,否则直接抛出java.lang.IllegalMonitorStateException异常)。
notify:将该对象中等待池中的线程,随机选取一个放入对象的锁池,当当前线程结束后释放掉锁, 锁池中的线程即可竞争对象的锁来获得执行机会。
notifyAll:将对象中等待池中的线程,全部放入锁池。
(notify锁唤醒的线程选择由虚拟机实现来决定,不能保证一个对象锁关联的等待集合中的线程按照所期望的顺序被唤醒,很可能一个线程被唤醒之后,发现他所要求的条件并没有满足,而重新进入等待池。因为当等待池中包含多个线程时,一般使用notifyAll方法,不过该方法会导致线程在没有必要的情况下被唤醒,之后又马上进入等待池,对性能有影响,不过能保证程序的正确性)
工作流程:
a、Consumer线程A 来 看产品,发现产品为空,调用产品对象的wait(),线程A进入产品对象的等待池并释放产品的锁。
b、Producer线程B获得产品的锁,执行产品的notifyAll(),Consumer线程A从产品的等待池进入锁池,Producer线程B生产产品,然后退出释放锁。
c、Consumer线程A获得产品锁,进入执行,发现有产品,消费产品,然后退出。
生产者消费者问题是研究多线程程序时绕不开的经典问题之一,它描述是有一块缓冲区作为仓库,生产者可以将产品放入仓库,消费者则可以从仓库中取走产品。解决生产者/消费者问题的方法可分为两类:(1)采用某种机制保护生产者和消费者之间的同步;(2)在生产者和消费者之间建立一个管道。第一种方式有较高的效率,并且易于实现,代码的可控制性较好,属于常用的模式。第二种管道缓冲区不易控制,被传输数据对象不易于封装等,实用性不强。因此本文只介绍同步机制实现的生产者/消费者问题。
同步问题核心在于:如何保证同一资源被多个线程并发访问时的完整性。常用的同步方法是采用信号或加锁机制,保证资源在任意时刻至多被一个线程访问。Java语言在多线程编程上实现了完全对象化,提供了对同步机制的良好支持。在Java中一共有四种方法支持同步,其中前三个是同步方法,一个是管道方法。
(1)wait() / notify()方法
(2)await() / signal()方法
(3)BlockingQueue阻塞队列方法
(4)PipedInputStream / PipedOutputStream
还有一点需要特别强调:调用notify和notifyAll方法后,当前线程并不会立即放弃锁的持有权,而必须要等待当前同步代码块执行完才会让出锁。
参考博客:
http://lavasoft.blog.51cto.com/62575/27069
http://blog.csdn.net/escaflone/article/details/10418651
http://blog.csdn.net/monkey_d_meng/article/details/6251879
http://www.cnblogs.com/riskyer/p/3263032.html
http://my.oschina.net/hanzhankang/blog/193917