https://javaguide.cn/home.html
进程是程序的一次执行过程,是系统运行程序的基本单位,因此进程是动态的。系统运行一个程序即是一个进程从创建,运行到消亡的过程。在 Java 中,当我们启动 main 函数时其实就是启动了一个 JVM 的进程,而 main 函数所在的线程就是这个进程中的一个线程,也称主线程。如下图所示,在 Windows 中通过查看任务管理器的方式,我们就可以清楚看到 Windows 当前运行的进程。
线程与进程相似,但线程是一个比进程更小的执行单位。一个进程在其执行的过程中可以产生多个线程。与进程不同的是同类的多个线程共享进程的堆和方法区资源,但每个线程有自己的程序计数器、虚拟机栈和本地方法栈
,所以系统在产生一个线程,或是在各个线程之间作切换工作时,负担要比进程小得多,也正因为如此,线程也被称为轻量级进程。
Java 程序天生就是多线程程序,我们可以通过 JMX 来看看一个普通的 Java 程序有哪些线程,代码如下
public class MultiThread {
public static void main(String[] args) {
// 获取 Java 线程管理 MXBean
ThreadMXBean threadMXBean = ManagementFactory.getThreadMXBean();
// 不需要获取同步的 monitor 和 synchronizer 信息,仅获取线程和线程堆栈信息
ThreadInfo[] threadInfos = threadMXBean.dumpAllThreads(false, false);
// 遍历线程信息,仅打印线程 ID 和线程名称信息
for (ThreadInfo threadInfo : threadInfos) {
System.out.println("[" + threadInfo.getThreadId() + "] " + threadInfo.getThreadName());
}
}
}
[5] Attach Listener //添加事件
[4] Signal Dispatcher // 分发处理给 JVM 信号的线程
[3] Finalizer //调用对象 finalize 方法的线程
[2] Reference Handler //清除 reference 线程
[1] main //main 线程,程序入口
一个进程中可以有多个线程,多个线程共享进程的堆和方法区 (JDK1.8 之后的元空间)资源,但是每个线程有自己的程序计数器、虚拟机栈 和 本地方法栈。
总结:线程是进程划分成的更小的运行单位。线程和进程最大的不同在于基本上各进程是独立的,而各线程则不一定,因为同一进程中的线程极有可能会相互影响
。线程执行开销小,但不利于资源的管理和保护;而进程正相反。
程序计数器私有主要是为了线程切换后能恢复到正确的执行位置。
虚拟机栈: 每个 Java 方法在执行之前会创建一个栈帧用于存储局部变量表、操作数栈、常量池引用等信息。从方法调用直至执行完成的过程,就对应着一个栈帧在 Java 虚拟机栈中入栈和出栈的过程。本地方法栈: 和虚拟机栈所发挥的作用非常相似,区别是:虚拟机栈为虚拟机执行 Java 方法 (也就是字节码)服务,而本地方法栈则为虚拟机使用到的 Native 方法服务。 在 HotSpot 虚拟机中和 Java 虚拟机栈合二为一。所以,为了保证线程中的局部变量不被别的线程访问到,虚拟机栈和本地方法栈是线程私有的
堆和方法区是所有线程共享的资源,其中堆是进程中最大的一块内存,主要用于存放新创建的对象 (几乎所有对象都在这里分配内存),方法区主要用于存放已被加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。
单核 CPU 同时运行多个线程的效率是否会高,取决于线程的类型和任务的性质。一般来说,有两种类型的线程:CPU 密集型和 IO 密集型。CPU 密集型的线程主要进行计算和逻辑处理,需要占用大量的 CPU 资源。IO 密集型的线程主要进行输入输出操作,如读写文件、网络通信等,需要等待 IO 设备的响应,而不占用太多的 CPU 资源。在单核 CPU 上,同一时刻只能有一个线程在运行,其他线程需要等待 CPU 的时间片分配。如果线程是 CPU 密集型的,那么多个线程同时运行会导致频繁的线程切换,增加了系统的开销,降低了效率。如果线程是 IO 密集型的,那么多个线程同时运行可以利用 CPU 在等待 IO 时的空闲时间,提高了效率。
因此,对于单核 CPU 来说,如果任务是 CPU 密集型的,那么开很多线程会影响效率;如果任务是 IO 密集型的,那么开很多线程会提高效率。当然,这里的“很多”也要适度,不能超过系统能够承受的上限。
Java 线程在运行的生命周期中的指定时刻只可能处于下面 6 种不同状态的其中一个状态:
NEW: 初始状态,线程被创建出来但没有被调用 start() 。
RUNNABLE: 运行状态,线程被调用了 start()等待运行的状态。
BLOCKED:阻塞状态,需要等待锁释放。
WAITING:等待状态,表示该线程需要等待其他线程做出一些特定动作(通知或中断)。
TIME_WAITING:超时等待状态,可以在指定的时间后自行返回而不是像 WAITING 那样一直等待。
TERMINATED:终止状态,表示该线程已经运行完毕。
当线程执行 wait()方法之后,线程进入 WAITING(等待) 状态。进入等待状态的线程需要依靠其他线程的通知才能够返回到运行状态。
TIMED_WAITING(超时等待) 状态相当于在等待状态的基础上增加了超时限制,比如通过 sleep(long millis)方法或 wait(long millis)方法可以将线程置于 TIMED_WAITING 状态。当超时时间结束后,线程将会返回到 RUNNABLE 状态。
当线程进入 synchronized 方法/块或者调用 wait 后(被 notify)重新进入 synchronized 方法/块,但是锁被其它线程占有,这个时候线程就会进入 BLOCKED(阻塞) 状态。
线程在执行完了 run()方法之后将会进入到 TERMINATED(终止) 状态。
线程在执行过程中会有自己的运行条件和状态(也称上下文),比如上文所说到过的程序计数器,栈信息等。当出现如下情况的时候,线程会从占用 CPU 状态中退出。主动让出 CPU,比如调用了 sleep(), wait() 等。时间片用完,因为操作系统要防止一个线程或者进程长时间占用 CPU 导致其他线程或者进程饿死。调用了阻塞类型的系统中断,比如请求 IO,线程被阻塞。被终止或结束运行这其中前三种都会发生线程切换,线程切换意味着需要保存当前线程的上下文,留待线程下次占用 CPU 的时候恢复现场。并加载下一个将要占用 CPU 的线程上下文。这就是所谓的 上下文切换。上下文切换是现代操作系统的基本功能,因其每次需要保存信息恢复信息,这将会占用 CPU,内存等系统资源进行处理,也就意味着效率会有一定损耗,如果频繁切换就会造成整体效率低下。
认识线程死锁线程死锁描述的是这样一种情况:多个线程同时被阻塞,它们中的一个或者全部都在等待某个资源被释放。由于线程被无限期地阻塞,因此程序不可能正常终止。如下图所示,线程 A 持有资源 2,线程 B 持有资源 1,他们同时都想申请对方的资源,所以这两个线程就会互相等待而进入死锁状态。
public class DeadLockDemo {
private static Object resource1 = new Object();//资源 1
private static Object resource2 = new Object();//资源 2
public static void main(String[] args) {
new Thread(() -> {
synchronized (resource1) {
System.out.println(Thread.currentThread() + "get resource1");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread() + "waiting get resource2");
synchronized (resource2) {
System.out.println(Thread.currentThread() + "get resource2");
}
}
}, "线程 1").start();
new Thread(() -> {
synchronized (resource2) {
System.out.println(Thread.currentThread() + "get resource2");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread() + "waiting get resource1");
synchronized (resource1) {
System.out.println(Thread.currentThread() + "get resource1");
}
}
}, "线程 2").start();
}
}
Thread[线程 1,5,main]get resource1
Thread[线程 2,5,main]get resource2
Thread[线程 1,5,main]waiting get resource2
Thread[线程 2,5,main]waiting get resource1
线程 A 通过 synchronized (resource1) 获得 resource1 的监视器锁,然后通过Thread.sleep(1000);让线程 A 休眠 1s 为的是让线程 B 得到执行然后获取到 resource2 的监视器锁。线程 A 和线程 B 休眠结束了都开始企图请求获取对方的资源,然后这两个线程就会陷入互相等待的状态,这也就产生了死锁
。
上面的例子符合产生死锁的四个必要条件:
互斥条件
:该资源任意一个时刻只由一个线程占用。
请求与保持条件
:一个线程因请求资源而阻塞时,对已获得的资源保持不放。
不剥夺条件:
线程已获得的资源在未使用完之前不能被其他线程强行剥夺,只有自己使用完毕后才释放资源。
循环等待条件
:若干线程之间形成一种头尾相接的循环等待资源关系。
如何预防死锁? 破坏死锁的产生的必要条件即可:
我们对线程 2 的代码修改成下面这样就不会产生死锁了。
new Thread(() -> {
synchronized (resource1) {
System.out.println(Thread.currentThread() + "get resource1");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread() + "waiting get resource2");
synchronized (resource2) {
System.out.println(Thread.currentThread() + "get resource2");
}
}
}, "线程 2").start();
输出:
Thread[线程 1,5,main]get resource1
Thread[线程 1,5,main]waiting get resource2
Thread[线程 1,5,main]get resource2
Thread[线程 2,5,main]get resource1
Thread[线程 2,5,main]waiting get resource2
Thread[线程 2,5,main]get resource2
Process finished with exit code 0
相同:两者都可以暂停线程的执行。
区别:sleep() 方法没有释放锁,而 wait() 方法释放了锁 。wait() 通常被用于线程间交互/通信,sleep()通常被用于暂停执行。
wait() 方法被调用后,线程不会自动苏醒
,需要别的线程调用同一个对象上的 notify()或者 notifyAll() 方法。sleep()方法执行完成后,线程会自动苏醒
,或者也可以使用 wait(long timeout) 超时后线程会自动苏醒。
sleep() 是 Thread 类的静态本地方法,wait() 则是 Object 类的本地方法。为什么这样设计呢?下一个问题就会聊到。
wait() 是让获得对象锁的线程实现等待,会自动释放当前线程占有的对象锁。每个对象(Object)都拥有对象锁,既然要释放当前线程占有的对象锁并让其进入 WAITING 状态,自然是要操作对应的对象(Object)而非当前的线程(Thread)。类似的问题:为什么 sleep() 方法定义在 Thread 中?因为 sleep() 是让当前线程暂停执行,不涉及到对象类,也不需要获得对象锁。
这是另一个非常经典的 Java 多线程面试问题,而且在面试中会经常被问到。很简单,但是很多人都会答不上来!new 一个 Thread,线程进入了新建状态。调用 start()方法,会启动一个线程并使线程进入了就绪状态,当分配到时间片后就可以开始运行了。 start() 会执行线程的相应准备工作,然后自动执行 run() 方法的内容,这是真正的多线程工作。 但是,直接执行 run() 方法,会把 run() 方法当成一个 main 线程下的普通方法去执行,并不会在某个线程中执行它,所以这并不是多线程工作。
总结:调用 start() 方法方可启动线程并使线程进入就绪状态,直接执行 run() 方法的话不会以多线程的方式执行。
主内存
:所有线程创建的实例对象都存放在主内存中,不管该实例对象是成员变量,还是局部变量,类信息、常量、静态变量都是放在主内存中。为了获取更好的运行速度,虚拟机及硬件系统可能会让工作内存优先存储于寄存器和高速缓存中。
本地内存
:每个线程都有一个私有的本地内存,本地内存存储了该线程以读 / 写共享变量的副本。每个线程只能操作自己本地内存中的变量,无法直接访问其他线程的本地内存。如果线程间需要通信,必须通过主内存来进行。本地内存是 JMM 抽象出来的一个概念,并不真实存在,它涵盖了缓存、写缓冲区、寄存器以及其他的硬件和编译器优化。
从上图来看,线程 1 与线程 2 之间如果要进行通信的话,必须要经历下面 2 个步骤:
线程 1 把本地内存中修改过的共享变量副本的值同步到主内存中去。
线程 2 到主存中读取对应的共享变量的值。也就是说,JMM 为共享变量提供了可见性的保障。
不过,多线程下,对主内存中的一个共享变量进行操作有可能诱发线程安全问题。
举个例子:线程 1 和线程 2 分别对同一个共享变量进行操作,一个执行修改,一个执行读取。线程 2 读取到的是线程 1 修改之前的值还是修改后的值并不确定,都有可能,因为线程 1 和线程 2 都是先将共享变量从主内存拷贝到对应线程的工作内存中。
JMM(Java 内存模型)主要定义了对于一个共享变量,当另一个线程对这个共享变量执行写操作后,这个线程对这个共享变量的可见性。
要想理解透彻 JMM(Java 内存模型),我们先要从 CPU 缓存模型和指令重排序
说起!
为什么要弄一个 CPU 高速缓存呢? 类比我们开发网站后台系统使用的缓存(比如 Redis)是为了解决程序处理速度和访问常规关系型数据库速度不对等的问题。
CPU 缓存则是为了解决 CPU 处理速度和内存处理速度不对等的问题。我们甚至可以把 内存看作外存的高速缓存,程序运行的时候我们把外存的数据复制到内存,由于内存的处理速度远远高于外存,这样提高了处理速度
。总结:CPU Cache 缓存的是内存数据用于解决 CPU 处理速度和内存不匹配的问题,内存缓存的是硬盘数据用于解决硬盘访问速度过慢的问题。
现代的 CPU Cache 通常分为三层,分别叫 L1,L2,L3 Cache。有些 CPU 可能还有 L4 Cache,这里不做讨论,并不常见CPU Cache 的工作方式
: 先复制一份数据到 CPU Cache 中,当 CPU 需要用到的时候就可以直接从 CPU Cache 中读取数据,当运算完成后,再将运算得到的数据写回 Main Memory 中。但是,这样存在 内存缓存不一致性的问题 !比如我执行一个 i++ 操作的话,如果两个线程同时执行的话,假设两个线程从 CPU Cache 中读取的 i=1,两个线程做了 i++ 运算完之后再写回 Main Memory 之后 i=2,而正确结果应该是 i=3。
CPU 为了解决内存缓存不一致性问题可以通过制定缓存一致协议(比如 MESI 协议open in new window)或者其他手段来解决。 这个缓存一致性协议指的是在 CPU 高速缓存与主内存交互的时候需要遵守的原则和规范。不同的 CPU 中,使用的缓存一致性协议通常也会有所不同。
我们的程序运行在操作系统之上,操作系统屏蔽了底层硬件的操作细节,将各种硬件资源虚拟化。于是,操作系统也就同样需要解决内存缓存不一致性问题。操作系统通过 内存模型(Memory Model) 定义一系列规范来解决这个问题。无论是 Windows 系统,还是 Linux 系统,它们都有特定的内存模型。
说完了 CPU 缓存模型,我们再来看看另外一个比较重要的概念 指令重排序
。为了提升执行速度/性能,计算机在执行程序代码的时候,会对指令进行重排序。什么是指令重排序? 简单来说就是系统在执行代码的时候并不一定是按照你写的代码的顺序依次执行。
常见的指令重排序有下面 2 种情况:
Java 源代码会经历 编译器优化重排 —> 指令并行重排 —> 内存系统重排
的过程,最终才变成操作系统可执行的指令序列。指令重排序可以保证串行语义一致,但是没有义务保证多线程间的语义也一致 ,所以在多线程下,指令重排序可能会导致一些问题。编译器和处理器的指令重排序的处理方式不一样。对于编译器,通过禁止特定类型的编译器重排序的方式来禁止重排序。对于处理器,通过插入内存屏障(Memory Barrier,或有时叫做内存栅栏,Memory Fence)的方式来禁止特定类型的处理器重排序。指令并行重排和内存系统重排都属于是处理器级别的指令重排序。
Java 内存模型(JMM) 抽象了线程和主内存之间的关系,就比如说线程之间的共享变量必须存储在主内存中。在 JDK1.2 之前,Java 的内存模型实现总是从 主存 (即共享内存)读取变量,是不需要进行特别的注意的。而在当前的 Java 内存模型下,线程可以把变量保存 本地内存 (比如机器的寄存器)中,而不是直接在主存中进行读写。这就可能造成一个线程在主存中修改了一个变量的值,而另外一个线程还继续使用它在寄存器中的变量值的拷贝,造成数据的不一致。这和我们上面讲到的 CPU 缓存模型非常相似。
一次操作或者多次操作,要么所有的操作全部都得到执行并且不会受到任何因素的干扰而中断,要么都不执行。在 Java 中,可以借助synchronized、各种 Lock 以及各种原子类实现原子性。synchronized 和各种 Lock 可以保证任一时刻只有一个线程访问该代码块,因此可以保障原子性。各种原子类是利用 CAS (compare and swap) 操作(可能也会用到 volatile或者final关键字)来保证原子操作。
当一个线程对共享变量进行了修改,那么另外的线程都是立即可以看到修改后的最新值。在 Java 中,可以借助synchronized、volatile 以及各种 Lock 实现可见性。如果我们将变量声明为 volatile ,这就指示 JVM,这个变量是共享且不稳定的,每次使用它都到主存中进行读取。
由于指令重排序问题,代码的执行顺序未必就是编写代码时候的顺序。我们上面讲重排序的时候也提到过:指令重排序可以保证串行语义一致,但是没有义务保证多线程间的语义也一致 ,所以在多线程下,指令重排序可能会导致一些问题。在 Java 中,volatile 关键字可以禁止指令进行重排序优化。
在 Java 中,volatile 关键字可以保证变量的可见性,如果我们将变量声明为 volatile ,这就指示 JVM,这个变量是共享且不稳定的,每次使用它都到主存中进行读取。
volatile 关键字其实并非是 Java 语言特有的,在 C 语言里也有,它最原始的意义就是禁用 CPU 缓存。如果我们将一个变量使用 volatile 修饰,这就指示 编译器,这个变量是共享且不稳定的,每次使用它都到主存中进行读取
。volatile 关键字能保证数据的可见性,但不能保证数据的原子性。synchronized 关键字两者都能保证。
如何禁止指令重排序?在 Java 中,volatile 关键字除了可以保证变量的可见性,还有一个重要的作用就是防止 JVM 的指令重排序。 如果我们将变量声明为 volatile ,在对这个变量进行读写操作的时候,会通过插入特定的 内存屏障 的方式来禁止指令重排序。在 Java 中,Unsafe 类提供了三个开箱即用的内存屏障相关的方法,屏蔽了操作系统底层的差异:
public native void loadFence();
public native void storeFence();
public native void fullFence();
理论上来说,你通过这个三个方法也可以实现和volatile禁止重排序一样的效
果,只是会麻烦一些。下面我以一个常见的面试题为例讲解一下 volatile 关键字禁止指令重排序的效果。面试中面试官经常会说:“单例模式了解吗?来给我手写一下!给我解释一下双重检验锁方式实现单例模式的原理
呗!”
双重校验锁实现对象单例(线程安全)
public class Singleton {
private volatile static Singleton uniqueInstance;
private Singleton() {
}
public static Singleton getUniqueInstance() {
//先判断对象是否已经实例过,没有实例化过才进入加锁代码
if (uniqueInstance == null) {
//类对象加锁
synchronized (Singleton.class) {
if (uniqueInstance == null) {
uniqueInstance = new Singleton();
}
}
}
return uniqueInstance;
}
}
uniqueInstance 采用 volatile 关键字修饰也是很有必要的
, uniqueInstance = new Singleton(); 这段代码其实是分为三步执行:
但是由于 JVM 具有指令重排的特性,执行顺序有可能变成 1->3->2
。指令重排在单线程环境下不会出现问题,但是在多线程环境下会导致一个线程获得还没有初始化的实例。例如,线程 T1 执行了 1 和 3,此时 T2 调用 getUniqueInstance() 后发现 uniqueInstance 不为空,因此返回 uniqueInstance,但此时 uniqueInstance 还未被初始化。
volatile 关键字能保证变量的可见性,但不能保证对变量的操作是原子性的。
我们通过下面的代码即可证明:
/**
* 微信搜 JavaGuide 回复"面试突击"即可免费领取个人原创的 Java 面试手册
*
* @author Guide哥
* @date 2022/08/03 13:40
**/
public class VolatoleAtomicityDemo {
public volatile static int inc = 0;
public void increase() {
inc++;
}
public static void main(String[] args) throws InterruptedException {
ExecutorService threadPool = Executors.newFixedThreadPool(5);
VolatoleAtomicityDemo volatoleAtomicityDemo = new VolatoleAtomicityDemo();
for (int i = 0; i < 5; i++) {
threadPool.execute(() -> {
for (int j = 0; j < 500; j++) {
volatoleAtomicityDemo.increase();
}
});
}
// 等待1.5秒,保证上面程序执行完成
Thread.sleep(1500);
System.out.println(inc);
threadPool.shutdown();
}
}
为什么会出现这种情况呢?不是说好了,volatile 可以保证变量的可见性嘛!也就是说,如果 volatile 能保证 inc++ 操作的原子性的话。每个线程中对 inc 变量自增完之后,其他线程可以立即看到修改后的值。5 个线程分别进行了 500 次操作,那么最终 inc 的值应该是 5*500=2500。很多人会误认为自增操作 inc++ 是原子性的,实际上,inc++ 其实是一个复合操作,包括三步:读取 inc 的值。对 inc 加 1。将 inc 的值写回内存。
volatile 是无法保证这三个操作是具有原子性的,有可能导致下面这种情况出现:线程 1 对 inc 进行读取操作之后,还未对其进行修改。线程 2 又读取了 inc的值并对其进行修改(+1),再将inc 的值写回内存。线程 2 操作完毕后,线程 1 对 inc的值进行修改(+1),再将inc 的值写回内存。这也就导致两个线程分别对 inc 进行了一次自增操作后,inc 实际上只增加了 1。其实,
如果想要保证上面的代码运行正确也非常简单,利用
synchronized、Lock或者AtomicInteger
都可以.
使用 synchronized 改进:
public synchronized void increase() {
inc++;
}
使用 AtomicInteger 改进:
public AtomicInteger inc = new AtomicInteger();
public void increase() {
inc.getAndIncrement();
}
使用 ReentrantLock 改进:
Lock lock = new ReentrantLock();
public void increase() {
lock.lock();
try {
inc++;
} finally {
lock.unlock();
}
}
什么是悲观锁?悲观锁总是假设最坏的情况,认为共享资源每次被访问的时候就会出现问题(比如共享数据被修改),所以每次在获取资源操作的时候都会上锁,这样其他线程想拿到这个资源就会阻塞直到锁被上一个持有者释放
。也就是说,共享资源每次只给一个线程使用,其它线程阻塞,用完后再把资源转让给其它线程。
像 Java 中synchronized和ReentrantLock等独占锁就是悲观锁思想的实现。
public void performSynchronisedTask() {
synchronized (this) {
// 需要同步的操作
}
}
private Lock lock = new ReentrantLock();
lock.lock();
try {
// 需要同步的操作
} finally {
lock.unlock();
}
高并发的场景下,激烈的锁竞争会造成线程阻塞,大量阻塞线程会导致系统的上下文切换,增加系统的性能开销。并且,悲观锁还可能会存在死锁问题,影响代码的正常运行.
乐观锁总是假设最好的情况,认为共享资源每次被访问的时候不会出现问题,线程可以不停地执行,无需加锁也无需等待,只是在提交修改的时候去验证对应的资源(也就是数据)是否被其它线程修改了
(具体方法可以使用版本号机制或 CAS 算法)
在 Java 中java.util.concurrent.atomic包下面的原子变量类(比如AtomicInteger、LongAdder)就是使用了乐观锁的一种实现方式 CAS 实现的。
// LongAdder 在高并发场景下会比 AtomicInteger 和 AtomicLong 的性能更好
// 代价就是会消耗更多的内存空间(空间换时间)
LongAdder sum = new LongAdder();
sum.increment();
ABA 问题是乐观锁最常见的问题。
ABA 问题
如果一个变量 V 初次读取的时候是 A 值,并且在准备赋值的时候检查到它仍然是 A 值,那我们就能说明它的值没有被其他线程修改过了吗?很明显是不能的,因为在这段时间它的值可能被改为其他值,然后又改回 A,那 CAS 操作就会误认为它从来没有被修改过。这个问题被称为 CAS 操作的 "ABA"问题。
ABA 问题的解决思路是在变量前面追加上版本号或者时间戳。JDK 1.5 以后的 AtomicStampedReference 类就是用来解决 ABA 问题的,其中的 compareAndSet() 方法就是首先检查当前引用是否等于预期引用,并且当前标志是否等于预期标志,如果全部相等,则以原子方式将该引用和该标志的值设置为给定的更新值
循环时间长开销大CAS 经常会用到自旋操作来进行重试,也就是不成功就一直循环执行直到成功。如果长时间不成功,会给 CPU 带来非常大的执行开销。如果 JVM 能支持处理器提供的 pause 指令那么效率会有一定的提升,pause 指令有两个作用:可以延迟流水线执行指令,使 CPU 不会消耗过多的执行资源,延迟的时间取决于具体实现的版本,在一些处理器上延迟时间是零。可以避免在退出循环的时候因内存顺序冲而引起 CPU 流水线被清空,从而提高 CPU 的执行效率。# 只能保证一个共享变量的原子操作CAS 只对单个共享变量有效,当操作涉及跨多个共享变量时 CAS 无效。但是从 JDK 1.5 开始,提供了AtomicReference类来保证引用对象之间的原子性,你可以把多个变量放在一个对象里来进行 CAS 操作.所以我们可以使用锁或者利用AtomicReference类把多个共享变量合并成一个共享变量来操作。
synchronized 是 Java 中的一个关键字,翻译成中文是同步的意思,主要解决的是多个线程之间访问资源的同步性,可以保证被它修饰的方法或者代码块在任意时刻只能有一个线程执行。在 Java 早期版本中,synchronized 属于 重量级锁,效率低下。这是因为监视器锁(monitor)是依赖于底层的操作系统的 Mutex Lock 来实现的,Java 的线程是映射到操作系统的原生线程之上的。如果要挂起或者唤醒一个线程,都需要操作系统帮忙完成,而操作系统实现线程之间的切换时需要从用户态转换到内核态,这个状态之间的转换需要相对比较长的时间,时间成本相对较高。不过,在 Java 6 之后, synchronized 引入了大量的优化如自旋锁、适应性自旋锁、锁消除、锁粗化、偏向锁、轻量级锁等技术来减少锁操作的开销,这些优化让 synchronized 锁的效率提升了很多。因此, synchronized 还是可以在实际项目中使用的,像 JDK 源码、很多开源框架都大量使用了 synchronized 。关于偏向锁多补充一点:由于偏向锁增加了 JVM 的复杂性,同时也并没有为所有应用都带来性能提升。因此,在 JDK15 中,偏向锁被默认关闭(仍然可以使用 -XX:+UseBiasedLocking 启用偏向锁),在 JDK18 中,偏向锁已经被彻底废弃
(无法通过命令行打开)。# 如何使用 synchronized?
如何使用 synchronized?synchronized 关键字的使用方式主要有下面 3 种:
修饰实例方法
修饰静态方法
修饰代码块
1、修饰实例方法 (锁当前对象实例)给当前对象实例加锁,进入同步代码前要获得 当前对象实例的锁
synchronized void method() {
//业务代码
}
2、修饰静态方法 (锁当前类)给当前类加锁,会作用于类的所有对象实例 ,进入同步代码前要获得 当前 class 的锁。这是因为静态成员不属于任何一个实例对象,归整个类所有,不依赖于类的特定实例,被类的所有实例共享
synchronized static void method() {
//业务代码
}
3、修饰代码块 (锁指定对象/类)
对括号里指定的对象/类加锁
:
对象
的锁。Class
的锁synchronized(this) {
//业务代码
}
总结:
synchronized 关键字加到 static 静态方法和 synchronized(class) 代码块上都是是给 Class 类上锁;
synchronized 关键字加到实例方法上是给对象实例上锁;
尽量不要使用 synchronized(String a) 因为 JVM 中,字符串常量池具有缓存功能。
先说结论:构造方法不能使用 synchronized 关键字修饰。
构造方法本身就属于线程安全的,不存在同步的构造方法一说.
JDK1.6 之后的 synchronized 底层做了哪些优化?锁升级原理了解吗?在 Java 6 之后, synchronized 引入了大量的优化如自旋锁、适应性自旋锁、锁消除、锁粗化、偏向锁、轻量级锁等技术来减少锁操作的开销,这些优化让 synchronized 锁的效率提升了很多(JDK18 中,偏向锁已经被彻底废弃,前面已经提到过了)
。
锁主要存在四种状态,依次是:无锁状态、偏向锁状态、轻量级锁状态、重量级锁状态,他们会随着竞争的激烈而逐渐升级。注意锁可以升级不可降级,这种策略是为了提高获得锁和释放锁的效率
。
synchronized 锁升级是一个比较复杂的过程,面试也很少问到.
=synchronized 关键字和 volatile 关键字是两个互补的存在,而不是对立的存在!
volatile 关键字是线程同步的轻量级实现,所以 volatile性能肯定比synchronized关键字要好 。
但是 volatile 关键字只能用于变量而 synchronized 关键字可以修饰方法以及代码块 。
volatile 关键字能保证数据的可见性,但不能保证数据的原子性。synchronized 关键字两者都能保证。
volatile关键字主要用于解决变量在多个线程之间的可见性,而 synchronized 关键字解决的是多个线程之间访问资源的同步性。
ReentrantLock 实现了 Lock 接口,是一个可重入且独占式的锁,和 synchronized 关键字类似
。不过,ReentrantLock 更灵活、更强大,增加了轮询、超时、中断、公平锁和非公平锁等高级功能。
public class ReentrantLock implements Lock, java.io.Serializable {}
ReentrantLock 里面有一个内部类 Sync,Sync 继承 AQS(AbstractQueuedSynchronizer),添加锁和释放锁的大部分操作实际上都是在 Sync 中实现的。Sync 有公平锁 FairSync 和非公平锁 NonfairSync 两个子类。
ReentrantLock 默认使用非公平锁,也可以通过构造器来显式的指定使用公平锁:
// 传入一个 boolean 值,true 时为公平锁,false 时为非公平锁
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
从上面的内容可以看出, ReentrantLock 的底层就是由 AQS 来实现的。关于 AQS 的相关内容推荐阅读.
公平锁 : 锁被释放之后,先申请的线程先得到锁。性能较差一些,因为公平锁为了保证时间上的绝对顺序,上下文切换更频繁
。
非公平锁:锁被释放之后,后申请的线程可能会先获取到锁,是随机或者按照其他优先级排序的。性能更好,但可能会导致某些线程永远无法获取到锁
.
两者都是可重入锁,可重入锁 也叫递归锁
,指的是线程可以再次获取自己的内部锁。
比如一个线程获得了某个对象的锁,此时这个对象锁还没有释放,当其再次想要获取这个对象的锁的时候还是可以获取的,如果是不可重入锁的话,就会造成死锁
。JDK 提供的所有现成的 Lock 实现类,包括 synchronized 关键字锁都是可重入的。
在下面的代码中,method1() 和 method2()都被 synchronized 关键字修饰,method1()调用了method2()。
public class SynchronizedDemo {
public synchronized void method1() {
System.out.println("方法1");
method2();
}
public synchronized void method2() {
System.out.println("方法2");
}
}
由于 synchronized锁是可重入的,同一个线程在调用method1() 时可以直接获得当前对象的锁,执行 method2() 的时候可以再次获取这个对象的锁,不会产生死锁问题。假如synchronized是不可重入锁的话,由于该对象的锁已被当前线程所持有且无法释放,这就导致线程在执行 method2()时获取锁失败,会出现死锁问题。
synchronized 是依赖于 JVM 实现的,前面我们也讲到了 虚拟机团队在 JDK1.6 为 synchronized 关键字进行了很多优化,但是这些优化都是在虚拟机层面实现的,并没有直接暴露给我们。ReentrantLock 是 JDK 层面实现的(也就是 API 层面,需要 lock() 和 unlock() 方法配合 try/finally 语句块来完成),所以我们可以通过查看它的源代码,来看它是如何实现的。
等待可中断 : ReentrantLock提供了一种能够中断等待锁的线程的机制,通过 lock.lockInterruptibly() 来实现这个机制。也就是说正在等待的线程可以选择放弃等待,改为处理其他事情。
可实现公平锁 : ReentrantLock可以指定是公平锁还是非公平锁。而synchronized只能是非公平锁。所谓的公平锁就是先等待的线程先获得锁。ReentrantLock默认情况是非公平的,可以通过 ReentrantLock类的ReentrantLock(boolean fair)构造方法来指定是否是公平的。
可实现选择性通知(锁可以绑定多个条件): synchronized关键字与wait()和notify()/notifyAll()方法相结合可以实现等待/通知机制。ReentrantLock类当然也可以实现,但是需要借助于Condition接口与newCondition()方法。
可中断锁:获取锁的过程中可以被中断,不需要一直等到获取锁之后 才能进行其他逻辑处理。ReentrantLock 就属于是可中断锁。
不可中断锁:一旦线程申请了锁,就只能等到拿到锁以后才能进行其他的逻辑处理。 synchronized 就属于是不可中断锁。
ReentrantReadWriteLock 在实际项目中使用的并不多,面试中也问的比较少,简单了解即可。JDK 1.8 引入了性能更好的读写锁 StampedLock
。
ReentrantReadWriteLock 实现了 ReadWriteLock ,是一个可重入的读写锁,既可以保证多个线程同时读的效率,同时又可以保证有写入操作时的线程安全。
public class ReentrantReadWriteLock
implements ReadWriteLock, java.io.Serializable{
}
public interface ReadWriteLock {
Lock readLock();
Lock writeLock();
}
一般锁进行并发控制的规则:读读互斥、读写互斥、写写互斥。
读写锁进行并发控制的规则:读读不互斥、读写互斥、写写互斥(只有读读不互斥)。
ReentrantReadWriteLock 其实是两把锁,一把是 WriteLock (写锁),一把是 ReadLock(读锁) 。读锁是共享锁,写锁是独占锁。读锁可以被同时读,可以同时被多个线程持有,而写锁最多只能同时被一个线程持有。和 ReentrantLock 一样,ReentrantReadWriteLock 底层也是基于 AQS
实现的。
ReentrantReadWriteLock 也支持公平锁和非公平锁,默认使用非公平锁,可以通过构造器来显示的指定。
// 传入一个 boolean 值,true 时为公平锁,false 时为非公平锁
public ReentrantReadWriteLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
readerLock = new ReadLock(this);
writerLock = new WriteLock(this);
}
共享锁:一把锁可以被多个线程同时获得。
独占锁:一把锁只能被一个线程获得。
在线程持有读锁的情况下,该线程不能取得写锁(因为获取写锁的时候,如果发现当前的读锁被占用,就马上获取失败,不管读锁是不是被当前线程持有)。在线程持有写锁的情况下,该线程可以继续获取读锁(获取读锁时如果发现写锁被占用,只有写锁没有被当前线程占用的情况才会获取失败)。
聊聊 Java 的几把 JVM 级锁
https://mp.weixin.qq.com/s/h3VIUyH9L0v14MrQJiiDbw
写锁可以降级为读锁,但是读锁却不能升级为写锁。这是因为读锁升级为写锁会引起线程的争夺,毕竟写锁属于是独占锁,这样的话,会影响性能。另外,还可能会有死锁问题发生。举个例子:假设两个线程的读锁都想升级写锁,则需要对方都释放自己锁,而双方都不释放,就会产生死锁。
StampedLock 是 JDK 1.8 引入的性能更好的读写锁,不可重入且不支持条件变量 Conditon。不同于一般的 Lock 类,StampedLock 并不是直接实现 Lock或 ReadWriteLock接口,而是基于 CLH 锁 独立实现的(AQS 也是基于这玩意)。
StampedLock 的性能为什么更好?相比于传统读写锁多出来的乐观读是StampedLock比 ReadWriteLock 性能更好的关键原因。StampedLock 的乐观读允许一个写线程获取写锁,所以不会导致所有写线程阻塞,也就是当读多写少的时候,写线程有机会获取写锁,减少了线程饥饿的问题,吞吐量大大提高。# StampedLock 适合什么场景?和 ReentrantReadWriteLock 一样,StampedLock 同样适合读多写少的业务场景,可以作为 ReentrantReadWriteLock的替代品,性能更好。不过,需要注意的是StampedLock不可重入,不支持条件变量 Conditon,对中断操作支持也不友好(使用不当容易导致 CPU 飙升)。如果你需要用到 ReentrantLock 的一些高级性能,就不太建议使用 StampedLock 了。另外,StampedLock 性能虽好,但使用起来相对比较麻烦,一旦使用不当,就会出现生产问题。、
通常情况下,我们创建的变量是可以被任何一个线程访问并修改的。如果想实现每一个线程都有自己的专属本地变量该如何解决呢
?JDK 中自带的ThreadLocal类正是为了解决这样的问题。 ThreadLocal类主要解决的就是让每个线程绑定自己的值,可以将ThreadLocal类形象的比喻成存放数据的盒子,盒子中可以存储每个线程的私有数据。如果你创建了一个ThreadLocal变量,那么访问这个变量的每个线程都会有这个变量的本地副本,这也是ThreadLocal变量名的由来。他们可以使用 get() 和 set() 方法来获取默认值或将其值更改为当前线程所存的副本的值,从而避免了线程安全问题
。
再举个简单的例子:两个人去宝屋收集宝物,这两个共用一个袋子的话肯定会产生争执,但是给他们两个人每个人分配一个袋子的话就不会出现这样的问题。如果把这两个人比作线程的话,那么 ThreadLocal 就是用来避免这两个线程竞争的。
相信看了上面的解释,大家已经搞懂 ThreadLocal 类是个什么东西了。下面简单演示一下如何在项目中实际使用 ThreadLocal 。
import java.text.SimpleDateFormat;
import java.util.Random;
public class ThreadLocalExample implements Runnable{
// SimpleDateFormat 不是线程安全的,所以每个线程都要有自己独立的副本
private static final ThreadLocal<SimpleDateFormat> formatter = ThreadLocal.withInitial(() -> new SimpleDateFormat("yyyyMMdd HHmm"));
public static void main(String[] args) throws InterruptedException {
ThreadLocalExample obj = new ThreadLocalExample();
for(int i=0 ; i<10; i++){
Thread t = new Thread(obj, ""+i);
Thread.sleep(new Random().nextInt(1000));
t.start();
}
}
@Override
public void run() {
System.out.println("Thread Name= "+Thread.currentThread().getName()+" default Formatter = "+formatter.get().toPattern());
try {
Thread.sleep(new Random().nextInt(1000));
} catch (InterruptedException e) {
e.printStackTrace();
}
//formatter pattern is changed here by thread, but it won't reflect to other threads
formatter.set(new SimpleDateFormat());
System.out.println("Thread Name= "+Thread.currentThread().getName()+" formatter = "+formatter.get().toPattern());
}
}
输出结果 :
Thread Name= 0 default Formatter = yyyyMMdd HHmm
Thread Name= 0 formatter = yy-M-d ah:mm
Thread Name= 1 default Formatter = yyyyMMdd HHmm
Thread Name= 2 default Formatter = yyyyMMdd HHmm
Thread Name= 1 formatter = yy-M-d ah:mm
Thread Name= 3 default Formatter = yyyyMMdd HHmm
Thread Name= 2 formatter = yy-M-d ah:mm
Thread Name= 4 default Formatter = yyyyMMdd HHmm
Thread Name= 3 formatter = yy-M-d ah:mm
Thread Name= 4 formatter = yy-M-d ah:mm
Thread Name= 5 default Formatter = yyyyMMdd HHmm
Thread Name= 5 formatter = yy-M-d ah:mm
Thread Name= 6 default Formatter = yyyyMMdd HHmm
Thread Name= 6 formatter = yy-M-d ah:mm
Thread Name= 7 default Formatter = yyyyMMdd HHmm
Thread Name= 7 formatter = yy-M-d ah:mm
Thread Name= 8 default Formatter = yyyyMMdd HHmm
Thread Name= 9 default Formatter = yyyyMMdd HHmm
Thread Name= 8 formatter = yy-M-d ah:mm
Thread Name= 9 formatter = yy-M-d ah:mm
从输出中可以看出,虽然 Thread-0 已经改变了 formatter 的值,但 Thread-1 默认格式化值与初始化值相同,其他线程也一样。上面有一段代码用到了创建 ThreadLocal 变量的那段代码用到了 Java8 的知识,它等于下面这段代码,如果你写了下面这段代码的话,IDEA 会提示你转换为 Java8 的格式(IDEA 真的不错!)。因为 ThreadLocal 类在 Java 8 中扩展,使用一个新的方法withInitial(),将 Supplier 功能接口作为参数。
private static final ThreadLocal<SimpleDateFormat> formatter = new ThreadLocal<SimpleDateFormat>(){
@Override
protected SimpleDateFormat initialValue(){
return new SimpleDateFormat("yyyyMMdd HHmm");
}
};
顾名思义,线程池就是管理一系列线程的资源池。当有任务要处理时,直接从线程池中获取线程来处理,处理完之后线程并不会立即被销毁,而是等待下一个任务。
池化技术想必大家已经屡见不鲜了,线程池、数据库连接池、HTTP 连接池等等都是对这个思想的应用。池化技术的思想主要是为了减少每次获取资源的消耗,提高对资源的利用率。线程池提供了一种限制和管理资源(包括执行一个任务)的方式。 每个线程池还维护一些基本统计信息,例如已完成任务的数量。
使用线程池的好处:
降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
提高响应速度.当任务到达时,任务可以不需要等到线程创建就能立即执行。
提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
方式一:通过ThreadPoolExecutor构造函数来创建(推荐)
方式二:通过 Executor 框架的工具类 Executors 来创建。
我们可以创建多种类型的 ThreadPoolExecutor:
FixedThreadPool
:该方法返回一个固定线程数量的线程池。该线程池中的线程数量始终不变。当有一个新的任务提交时,线程池中若有空闲线程,则立即执行。若没有,则新的任务会被暂存在一个任务队列中,待有线程空闲时,便处理在任务队列中的任务。
SingleThreadExecutor
: 该方法返回一个只有一个线程的线程池。若多余一个任务被提交到该线程池,任务会被保存在一个任务队列中,待线程空闲,按先入先出的顺序执行队列中的任务。
CachedThreadPool
: 该方法返回一个可根据实际情况调整线程数量的线程池。初始大小为 0。当有新任务提交时,如果当前线程池中没有线程可用,它会创建一个新的线程来处理该任务。如果在一段时间内(默认为 60 秒)没有新任务提交,核心线程会超时并被销毁,从而缩小线程池的大小。
ScheduledThreadPool
:该方法返回一个用来在给定的延迟后运行任务或者定期执行任务的线程池。
对应 Executors 工具类中的方法如图所示:
在《阿里巴巴 Java 开发手册》“并发处理”这一章节,明确指出线程资源必须通过线程池提供,不允许在应用中自行显式创建线程。
为什么呢?
使用线程池的好处是减少在创建和销毁线程上所消耗的时间以及系统资源开销,解决资源不足的问题。如果不使用线程池,有可能会造成系统创建大量同类线程而导致消耗完内存或者“过度切换”的问题。
另外,《阿里巴巴 Java 开发手册》中强制线程池不允许使用 Executors 去创建,而是通过 ThreadPoolExecutor 构造函数的方式,这样的处理方式让写的同学更加明确线程池的运行规则,规避资源耗尽的风险
Executors 返回线程池对象的弊端如下(后文会详细介绍到):
FixedThreadPool 和 SingleThreadExecutor
:使用的是无界的 LinkedBlockingQueue,任务队列最大长度为 Integer.MAX_VALUE,可能堆积大量的请求,从而导致 OOM。
CachedThreadPool
:使用的是同步队列 SynchronousQueue, 允许创建的线程数量为 Integer.MAX_VALUE ,如果任务数量过多且执行速度较慢,可能会创建大量的线程,从而导致 OOM。
ScheduledThreadPool 和 SingleThreadScheduledExecutor
: 使用的无界的延迟阻塞队列DelayedWorkQueue,任务队列最大长度为 Integer.MAX_VALUE,可能堆积大量的请求,从而导致 OOM。
// 无界队列 LinkedBlockingQueue
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>());
}
// 无界队列 LinkedBlockingQueue
public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService (new ThreadPoolExecutor(1, 1,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>()));
}
// 同步队列 SynchronousQueue,没有容量,最大线程数是 Integer.MAX_VALUE`
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,60L, TimeUnit.SECONDS,new SynchronousQueue<Runnable>());
}
// DelayedWorkQueue(延迟阻塞队列)
public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
return new ScheduledThreadPoolExecutor(corePoolSize);
}
public ScheduledThreadPoolExecutor(int corePoolSize) {
super(corePoolSize, Integer.MAX_VALUE, 0, NANOSECONDS,
new DelayedWorkQueue());
}
/**
* 用给定的初始参数创建一个新的ThreadPoolExecutor。
*/
public ThreadPoolExecutor(int corePoolSize,//线程池的核心线程数量
int maximumPoolSize,//线程池的最大线程数
long keepAliveTime,//当线程数大于核心线程数时,多余的空闲线程存活的最长时间
TimeUnit unit,//时间单位
BlockingQueue workQueue,//任务队列,用来储存等待执行任务的队列
ThreadFactory threadFactory,//线程工厂,用来创建线程,一般默认即可
RejectedExecutionHandler handler//拒绝策略,当提交的任务过多而不能及时处理时,我们可以定制策略来处理任务
) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
ThreadPoolExecutor 3 个最重要的参数:
corePoolSize
: 任务队列未达到队列容量时,最大可以同时运行的线程数量。
maximumPoolSize
: 任务队列中存放的任务达到队列容量的时候,当前可以同时运行的线程数量变为最大线程数。workQueue
: 新任务来的时候会先判断当前运行的线程数量是否达到核心线程数,如果达到的话,新任务就会被存放在队列中。
ThreadPoolExecutor其他常见参数 :
keepAliveTime
:线程池中的线程数量大于 corePoolSize 的时候,如果这时没有新的任务提交,多余的空闲线程不会立即销毁,而是会等待,直到等待的时间超过了 keepAliveTime才会被回收销毁,线程池回收线程时,会对核心线程和非核心线程一视同仁,直到线程池中线程的数量等于 corePoolSize ,回收过程才会停止。
unit : keepAliveTime 参数的时间单位。
threadFactory :executor 创建新线程的时候会用到。
handler :饱和策略。关于饱和策略下面单独介绍一下。
下面这张图可以加深你对线程池中各个参数的相互关系的理解(图片来源:《Java 性能调优实战》)
如果当前同时运行的线程数量达到最大线程数量并且队列也已经被放满了任务时,ThreadPoolTaskExecutor 定义一些策略:
ThreadPoolExecutor.AbortPolicy
: 抛出 RejectedExecutionException来拒绝新任务的处理。ThreadPoolExecutor.CallerRunsPolicy
: 调用执行自己的线程运行任务,也就是直接在调用execute方法的线程中运行(run)被拒绝的任务,如果执行程序已关闭,则会丢弃该任务。因此这种策略会降低对于新任务提交速度,影响程序的整体性能。如果您的应用程序可以承受此延迟并且你要求任何一个任务请求都要被执行的话,你可以选择这个策略。ThreadPoolExecutor.DiscardPolicy
: 不处理新任务,直接丢弃掉。ThreadPoolExecutor.DiscardOldestPolicy: 此策略将丢弃最早的未处理的任务请求。
举个例子:Spring 通过 ThreadPoolTaskExecutor 或者我们直接通过 ThreadPoolExecutor 的构造函数创建线程池的时候,当我们不指定 RejectedExecutionHandler 饱和策略来配置线程池的时候,默认使用的是 AbortPolicy。在这种饱和策略下,如果队列满了,ThreadPoolExecutor 将抛出 RejectedExecutionException 异常来拒绝新来的任务 ,这代表你将丢失对这个任务的处理。如果不想丢弃任务的话,可以使用CallerRunsPolicy。CallerRunsPolicy 和其他的几个策略不同,它既不会抛弃任务,也不会抛出异常,而是将任务回退给调用者,使用调用者的线程来执行任务
public static class CallerRunsPolicy implements RejectedExecutionHandler {
public CallerRunsPolicy() { }
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
if (!e.isShutdown()) {
// 直接主线程执行,而不是线程池中的线程执行
r.run();
}
}
}
不同的线程池会选用不同的阻塞队列,我们可以结合内置线程池来分析
容量为 Integer.MAX_VALUE 的 LinkedBlockingQueue(无界队列):FixedThreadPool
和 SingleThreadExector
。FixedThreadPool最多只能创建核心线程数的线程(核心线程数和最大线程数相等),SingleThreadExector只能创建一个线程(核心线程数和最大线程数都是 1),二者的任务队列永远不会被放满。
SynchronousQueue(同步队列):CachedThreadPool
。SynchronousQueue 没有容量,不存储元素,目的是保证对于提交的任务,如果有空闲线程,则使用空闲线程来处理;否则新建一个线程来处理任务。也就是说,CachedThreadPool 的最大线程数是 Integer.MAX_VALUE ,可以理解为线程数是可以无限扩展的,可能会创建大量线程,从而导致 OOM。
DelayedWorkQueue(延迟阻塞队列):ScheduledThreadPool
和 SingleThreadScheduledExecutor
。DelayedWorkQueue 的内部元素并不是按照放入的时间排序,而是会按照延迟的时间长短对任务进行排序,内部采用的是“堆”的数据结构,可以保证每次出队的任务都是当前队列中执行时间最靠前的。DelayedWorkQueue 添加元素满了之后会自动扩容原来容量的 1/2,即永远不会阻塞,最大扩容可达 Integer.MAX_VALUE,所以最多只能创建核心线程数的线程。
如果当前运行的线程数小于核心线程数,那么就会新建一个线程来执行任务。如果当前运行的线程数等于或大于核心线程数,但是小于最大线程数,那么就把该任务放入到任务队列里等待执行。如果向任务队列投放任务失败(任务队列已经满了),但是当前运行的线程数是小于最大线程数的,就新建一个线程来执行任务。如果当前运行的线程数已经等同于最大线程数了,新建线程将会使当前运行的线程超出最大线程数,那么当前任务会被拒绝,饱和策略会调用RejectedExecutionHandler.rejectedExecution()方法。
很多人甚至可能都会觉得把线程池配置过大一点比较好!我觉得这明显是有问题的。就拿我们生活中非常常见的一例子来说:并不是人多就能把事情做好,增加了沟通交流成本。你本来一件事情只需要 3 个人做,你硬是拉来了 6 个人,会提升做事效率嘛?我想并不会。 线程数量过多的影响也是和我们分配多少人做事情一样,对于多线程这个场景来说主要是增加了上下文切换成本。不清楚什么是上下文切换的话,可以看我下面的介绍。
上下文切换:多线程编程中一般线程的个数都大于 CPU 核心的个数,而一个 CPU
核心在任意时刻只能被一个线程使用,为了让这些线程都能得到有效执行,CPU
采取的策略是为每个线程分配时间片并轮转的形式。当一个线程的时间片用完的时候就会重新处于就绪状态让给其他线程使用,这个过程就属于一次上下文切换。概括来说就是:当前任务在执行完
CPU
时间片切换到另一个任务之前会先保存自己的状态,以便下次再切换回这个任务时,可以再加载这个任务的状态。任务从保存到再加载的过程就是一次上下文切换。上下文切换通常是计算密集型的。也就是说,它需要相当可观的处理器时间,在每秒几十上百次的切换中,每次切换都需要纳秒量级的时间。所以,上下文切换对系统来说意味着消耗大量的
CPU 时间,事实上,可能是操作系统中时间消耗最大的操作。Linux 相比与其他操作系统(包括其他类 Unix
系统)有很多的优点,其中有一项就是,其上下文切换和模式切换的时间消耗非常少。
类比于实现世界中的人类通过合作做某件事情,我们可以肯定的一点是线程池大小设置过大或者过小都会有问题,合适的才是最好。
如果我们设置的线程池数量太小的
话,如果同一时间有大量任务/请求需要处理,可能会导致大量的请求/任务在任务队列中排队等待执行,甚至会出现任务队列满了之后任务/请求无法处理的情况,或者大量任务堆积在任务队列导致 OOM。这样很明显是有问题的,CPU 根本没有得到充分利用。
如果我们设置线程数量太大
,大量线程可能会同时在争取 CPU 资源,这样会导致大量的上下文切换,从而增加线程的执行时间,影响了整体执行效率。
有一个简单并且适用面比较广的公式:CPU 密集型任务(N+1): 这种任务消耗的主要是 CPU 资源,可以将线程数设置为 N(CPU 核心数)+1
。比 CPU 核心数多出来的一个线程是为了防止线程偶发的缺页中断,或者其它原因导致的任务暂停而带来的影响。一旦任务暂停,CPU 就会处于空闲状态,而在这种情况下多出来的一个线程就可以充分利用 CPU 的空闲时间。
I/O 密集型任务(2N): 这种任务应用起来,系统会用大部分的时间来处理 I/O 交互,而线程在处理 I/O 的时间段内不会占用 CPU 来处理,这时就可以将 CPU 交出给其它线程使用。因此在 I/O 密集型任务的应用中,我们可以多配置一些线程,具体的计算方法是 2N
。
CPU 密集型简单理解就是利用 CPU 计算能力的任务比如你在内存中对大量数据进行排序。但凡涉及到网络读取,文件读取这类都是 IO 密集型,这类任务的特点是 CPU 计算耗费时间相比于等待 IO 操作完成的时间来说很少,大部分时间都花在了等待 IO 操作完成上。
美团技术团队在《Java 线程池实现原理及其在美团业务中的实践》open in new window这篇文章中介绍到对线程池参数实现可自定义配置的思路和方法。
美团技术团队的思路是主要对线程池的核心参数实现自定义可配置。
这三个核心参数是:
corePoolSize
: 核心线程数线程数定义了最小可以同时运行的线程数量。
为什么是这三个参数
?我在Java 线程池详解open in new window 这篇文章中就说过这三个参数是 ThreadPoolExecutor 最重要的参数,它们基本决定了线程池对于任务的处理策略
。
如何支持参数动态配置? 且看 ThreadPoolExecutor 提供的下面这些方法。
格外需要注意的是corePoolSize, 程序运行期间的时候,我们调用 setCorePoolSize()这个方法的话,线程池会首先判断当前工作线程数是否大于corePoolSize,如果大于的话就会回收工作线程。另外,你也看到了上面并没有动态指定队列长度的方法,美团的方式是自定义了一个叫做 ResizableCapacityLinkedBlockIngQueue 的队列(主要就是把LinkedBlockingQueue的 capacity 字段的 final 关键字修饰给去掉了,让它变为可变的)。最终实现的可动态修改线程池参数效果如下: