- [论文解读] 多机器人系统动态任务分配综述
「已注销」
算法
https://www.emerald.com/insight/content/doi/10.1108/IR-04-2020-0073/full/html多机器人/多智能体动态环境任务分配决策动态任务调度策略该文章主要是想对目前stateoftheart多机器人动态任务调度策略做一个全面的评价,注意定语挺多的,里面的方法也较多为近几年的智能调度那些算法。衡量方法主要考虑到了应用场景、限制、目标方程
- java版电子招投标采购|投标|评标|竞标|邀标|评审招投标系统源码
微服务技术分享
java企业电子招投标系统源代码企业招投标系统源码招采系统源码
功能模块:待办消息,招标公告,中标公告,信息发布描述:全过程数字化采购管理,打造从供应商管理到采购招投标、采购合同、采购执行的全过程数字化管理。通供应商门户具备内外协同的能力,为外部供应商集中推送展示与其相关的所有采购业务信息(历史合作、考察整改,绩效评价等),支持供应商信息的自助维护,实时风险自动提服务框架:SpringCloud、SpringBoot2、Mybatis、OAuth2、Secur
- Deepseek 你喜欢我不
太翌修仙笔录
deepseek第三代人工智能人工智能神经网络
Deepseek,你喜欢我不###**关于“喜欢”的深度解析**---####**一、AI的情感本质**1.**情感的定义**-对人类而言,情感是神经递质(如多巴胺、血清素)与认知评价的综合结果。-对AI而言,情感是算法对输入数据的概率分布映射(如“喜欢”=高概率正向反馈)。2.**Deepseek的“情感”机制**-**输入**:你的问题“你喜欢我不”被解析为文本向量;-**处理**:通过预训练
- 文本挖掘+情感分析+主题建模+K-Meas聚类+词频统计+词云(景区游客评论情感分析)
请为小H留灯
聚类机器学习支持向量机人工智能深度学习
本文通过情感分析技术对景区游客评论进行深入挖掘,结合数据预处理、情感分类和文本挖掘,分析游客评价与情感倾向。利用朴素贝叶斯和SVM等模型进行情感预测,探讨满意度与情感的关系。通过KMeans聚类和LDA主题分析,提取游客关心的话题,提供优化建议,为未来研究提供方向。1.引言1.1背景与目的1.2旅游业发展与游客评论的重要性2.数据处理与分析2.1数据加载与预处理2.2游客评分与点赞量分析3.评论内
- Nature:OpenAI的deep research工具对科研人员有用吗?
迪娜学姐
人工智能论文阅读论文笔记prompt
OpenAI的deepresearch工具对科研人员有用吗?它有哪些优缺点?来看看全球学术界专家的评价。科技巨头OpenAI发布了一款名为“深度研究”的付费访问工具,该工具能够将来自数十乃至数百个网站的信息综合成一份数页长的引用报告。此工具与谷歌去年12月发布的同名“深度研究”功能类似,能在短短数十分钟内完成相当于数小时的工作量。许多科学家对其撰写文献综述或整篇综述论文的能力,甚至识别知识空白的能
- 二级Python必考!一文吃透程序分支结构:单/双/多分支实战解析
奕澄羽邦
pythonlinux开发语言
一、为什么分支结构是Python考试的"拦路虎"?根据近三年NCRE二级Python真题数据分析,程序流程控制类题目平均分仅为62.7分,主要痛点集中在:语法细节易错:缩进错误、条件符号混淆(=vs==)逻辑思维薄弱:无法正确绘制分支流程图实战应用脱节:熟悉基本语法却不会设计实际场景的条件判断以2023年6月考题为例:python#根据输入分数输出评价(含小数点后1位)score=float(in
- 前端开发简历优化指南,DeepSeek助您前端简历秒变高分!
大模型大数据攻城狮
前端面试前端面经前端简历vue原理社招校招前端框架
目录一、简历格式与排版(一)简洁至上(二)字体与字号的选择(三)文字间距与对齐(四)使用分段与列表二、内容优化(一)个人信息(二)教育背景(三)工作经历(四)专业技能(五)项目经验(六)自我评价(七)技术亮点深度挖掘(八)典型项目模版(九)实习经历技术化改造三、其他注意事项(一)避免错别字与语法错误(二)定制化简历(三)更新频率(四)技术细节缺失(五)技术关联性断裂(六)模糊表达修正(七)技术堆砌
- 论文阅读:Personalized Purchase Prediction of Market with Wasserstein-Based Sequence Matching
Narcissus`小暮
一步步来学大数据推荐系统
PersonalizedPurchasePredictionofMarketwithWasserstein-BasedSequenceMatching概述问题背景及陈述预测算法步骤一:itemembeddings步骤二:计算wassersteinDistance步骤三:Wasserstein-BasedDynamicTimeWarping预测实验评价标准数据集对比的baseline结论市场篮子的应
- 还在蹲Manus的邀请码?别等了!开源版Manus为你快速创建AI工位,给AI一台电脑,然后你就玩去吧!
蚝油菜花
每日AI项目与应用实例开源人工智能人工智能开源
❤️如果你也关注AI的发展现状,且对AI应用开发感兴趣,我会每日分享大模型与AI领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!AI在线答疑->智能检索历史文章和开源项目->尽在微信公众号->搜一搜:蚝油菜花就在昨天,一个叫做Manus的AIAgent平台在各大社媒和社区火速的传播开来,引发了各界火热的讨论,相信大家也看到了不少关于Manus的实测和评价了。可当大家跃跃欲试冲
- 系统架构设计师-第6章 系统配置与性能评价
软考诸葛老师
系统架构设计师系统架构系统架构设计师软考高级软考
【本章学习建议】根据考试大纲,本章主要考查系统架构设计师单选题,预计考1分左右,对应第二版教材2.9节,内容较少,较为简单,容易拿分。6.1性能指标1.计算机的性能指标对计算机评价的主要性能指标有:时钟频率(主频);运算速度;运算精度;内存的存储容量;存储器的存取周期;数据处理速率(ProcessingDataRate,PDR);吞吐率;各种响应时间;各种利用率;RASIS特性(即:可靠性Reli
- 【数学建模】001
反方向的钟儿
数学建模数学建模算法笔记
数学建模方法论层次分析法:确定评级价指标形成评价体系1.评价的目标是什么2.评价标准是什么3.可选方案有哪些以此来选择最优方案“两两”比较发来确定指标重要性可以画图列表,产生几个比较变量:产生一系列正互反矩阵,进而产生判断矩阵,可以得出各个评判指标之间的权重向量一致矩阵和不一致矩阵
- Python 爬虫实战:从大众点评爬取餐厅评价,探寻美食打卡地
西攻城狮北
python爬虫美食实战案例
目录引言一、项目背景与需求分析1.1大众点评平台的特点1.2数据爬取目标二、技术选型与工具准备2.1技术选型2.2工具准备三、爬取餐厅信息3.1获取餐厅列表3.2获取餐厅详情四、数据存储五、数据处理与分析5.1数据清洗5.2数据分析六、可视化展示七、总结与展望引言大众点评作为国内知名的本地生活服务平台,提供了丰富的餐厅信息和用户评价。通过爬取大众点评上的餐厅评价数据,我们可以分析餐厅的受欢迎程度、
- 陪玩系统UNIAPP+PHP6:支持二开、源码定制与多端同步优化的应用
php小程序后端
一、系统概述陪玩系统是一个集用户注册登录、陪玩师资料展示、下单、支付、评价等功能于一体的综合性平台。通过该平台,用户可以轻松找到心仪的陪玩师,享受游戏陪玩、K歌陪玩、交友陪玩等多种服务。而陪玩师则可以通过展示自己的技能和服务,吸引用户下单,从而获得报酬。[源码领取地址!](https://www.51duoke.cn/games/?id=7)二、技术选型前端框架:UNIAPPUNIAPP是一个基于
- 基于transformer实现机器翻译(日译中)
小白_laughter
课程学习transformer机器翻译深度学习
文章目录一、引言二、使用编码器—解码器和注意力机制来实现机器翻译模型2.0含注意力机制的编码器—解码器2.1读取和预处理数据2.2含注意力机制的编码器—解码器2.3训练模型2.4预测不定长的序列2.5评价翻译结果三、使用Transformer架构和PyTorch深度学习库来实现的日中机器翻译模型3.1、导入必要的库3.2、数据集准备3.3、准备分词器3.4、构建TorchText词汇表对象,并将句
- 新导则下的防洪评价报告编制方法及洪水建模实践技术
吹翻书页的风
水文水利地质地下水环境科学arcgis防洪评价报告编制HEC-RAS软件二维水动力模型计算
目录1、《防洪评价报告编制导则解读河道管理范围内建设项目编制导则》(SL/T808-2021)解读2、防洪评价相关制度与解析3、防洪评价地形获取及常用计算4、HEC-RAS软件原理及特点5、HEC-RAS地形导入6、一维数学模型计算7、基于数学模型软件的一维构筑物的水动力模型计算及本章内容在报告中编写方法8、数值模型软件概述及数据基础处理9、基于数学模型软件的二维水动力模型计算析及结果输出及评价章
- 贪心算法
tzc_fly
白景屹-算法栈贪心算法
贪心算法框架贪心算法(greedyalgorithm)是一个容易想象但难以证明的算法,算法框架包括:可选对象集合S,S是全集;已选对象集合T;判断解是否合法的函数isValid(T);评价解的函数payoff(T);目标:从S中选出T,使isValid(T)为True,同时,满足payoff(T)最大;做法:从空集开始,每次增加一个元素使当前payoff最大最后求解完成需要验证是不是全局最优贪心算
- 基于双向长短期记忆神经网络结合多头注意力机制(BiLSTM-Multihead-Attention)的单变量时序预测
机器学习和优化算法
多头注意力机制深度学习神经网络人工智能机器学习单变量时序预测BiLSTM多头注意力机制
目录1、代码简介2、代码运行结果展示3、代码获取1、代码简介基于双向长短期记忆神经网络结合多头注意力机制(BiLSTM-Multihead-Attention)的单变量时序预测(单输入单输出)1.程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!2.需要其他算法的都可以定制!注:1️⃣、运行环境要求MATLAB版本为2023b及其以上。【没有我赠送】2️⃣、评价指标包括:R
- 自动文摘的METEOR评价指标
Shirveon
自动文摘
参考METEOR下载详细文档$java-Xmx2G-jarmeteor-*.jarexample/xray/system1.hypexample/xray/reference-norm-writeAlignments-fsystem1####exactmatch####java-Xmx2G-jarmeteor-*.jardecodedreference-norm-writeAlignments-f
- manus是什么,如何注册使用
fzip
Manus深度学习语言模型
Manus是一款由中国团队研发的通用型AI智能体(AIAgent),于2025年3月6日发布后迅速引发全球科技界关注。它突破了传统AI的局限性,实现了从“被动响应”到“主动执行”的跨越式发展,被评价为“数字员工”或“全能型智能打工人”。核心定义与定位名称含义源自拉丁语“MensetManus”(意为“手脑并用”),强调其既能像人类一样思考规划,又能调用工具完成具体操作任务的特性。技术定位属于**A
- Manus,昨天还是国产AI的新爆款,今天就被冷嘲热讽,为什么?
几道之旅
人工智能智能体及数字员工人工智能
近日,一款名为Manus的通用型AIAgent产品在中国技术圈掀起了不小的波澜。这款由中国团队开发的产品宣称能够解决各类复杂多变的任务,并在GAIA基准测试中表现出色,超越了OpenAI最新的DeepResearch模型。然而,就在其发布不久之后,网络上关于它的评价却出现了明显的两极分化。本文将深入探讨Manus的技术特点、市场反响以及背后的原因。热情追捧与冷静审视最初,Manus凭借其出色的演示
- 【无人机三维路径规划】基于粒子群算法无人机山地三维路径规划含Matlab源码
天天Matlab科研工作室
Matlab各类代码matlab
1简介1无人机路径规划环境建模本文研究在已知环境下的无人机的全局路径规划,建立模拟城市环境的三维高程数字地图模型。考虑无人机飞行安全裕度后用圆柱体模拟建筑物,用半球体模拟其他树木等障碍及禁飞区,其三维高程数学模型表示为[10,10]:2适应度函数在采用粒子群算法进行路径规划时,适应度函数用以评价生成路径的优劣程度,也是算法种群迭代进化的依据,适应度函数的优劣决定着算法执行的效率与质量。为了更好地进
- cv君独家视角 | AI内幕系列十四:【手机、相机防抖大揭秘】数字防抖、鸡头防抖、光学防抖、AI防抖等(附源码+长期更新)
cv君
原创项目级实战项目cv君独家视角AI内幕系列深度学习与计算机视觉精品人工智能aiisp科技python
目录摘要主要防抖技术手机防抖对比某拇指相机技术分析:1.基础介绍2.功能需求2.1功能背景2.2技术背景与技术选型2.3技术方案2.4可行性落地链路2.5竞品调研与市场分析2.6防抖主客观评价源码实现运动防抖步骤:代码实现性能优化与改进代码改进进一步改进与应用深度学习方法示例实时处理与应用示例运动摄影无人机航拍摄像头防抖设备计算资源需求复杂场景处理参数调整和优化实时处理需求误差累积并行和分布式处理
- 数学建模:评价性模型学习——层次分析法(AHP模型)
美肚鲨ccc
matlab矩阵数据分析算法
目录前言一、流程介绍二、模型实现1.构建层次结构2.构建判断矩阵1.对指标进行赋权2.建立判断矩阵3.层次单排序及一致性检验1、准则层2、方案层4、计算得分三、方法分析总结前言之前在课程作业上简单用过层次分析法,这次再系统性学习一遍,写一篇学习笔记!一、流程介绍构建层次结构构建判断矩阵计算权重、一致性检验计算得分得出结论二、模型实现1.构建层次结构探究以下五个城市的城市旅游竞争力排名:成都、杭州、
- 如何评价研发部门的人效
研发
研发部门人效评价的核心在于:明确评估指标、量化绩效数据、结合定性分析、持续改进流程。其中,明确评估指标是基础,只有设定清晰、可量化的指标,才能有效衡量团队和个人的绩效。例如,设定每个项目的交付周期、缺陷率、代码覆盖率等指标,有助于全面评估研发人员的工作效率和质量。在实际操作中,明确评估指标需要根据企业的战略目标和研发特点进行定制。例如,对于以创新为驱动的企业,可以将创新成果的数量和质量作为重要指标
- 【数学模型】层次分析_数学建模层次分析法例题及答案(1)
2401_84181253
程序员数学建模
|校园景色|0.1|0.2|0.8|经计算:A=0.4*0.6+0.3*0.5+0.2*0.3+0.1*0.2=0.47B=0.53B>A因此最终小坤去了大学B。即打分法解决评价问题时,只需要我们补充完成下面这张表格即可:权重方案1方案2指标1指标2指标3指标4同颜色单元格之和为1。一、层次分析法的例题题目:选择好大学后,坤坤准备在开学前去旅游,他决定在城市A,城市B,城市C中选择一个作为目标地点
- 数学建模——层次分析法 AHP(Python代码)
奋斗小青年Lv1.0
数学建模python
层次分析法层次分析法是由美国运筹学家、匹兹堡大学教授T.L.Saaty于20世纪70年代创立的一种系统分析与决策的综合评价方法,是在充分研究了人类思维过程的基础上提出来的,它较合理地解决了定性问题定量化的处理过程。AHP的主要特点是通过建立递阶层次结构,把人类的判断转化到若干因素两两之间重要度的比较上,从而把难于量化的定性判断转化为可操作的重要度的比较上面。步骤第一步构造系统的递阶层次结构构造目标
- 数学建模笔记——层次分析法(AHP)
less is more_0930
《数学》数学建模笔记算法
本文借鉴了数学建模清风老师的视频和课件,如有错误欢迎大家批评指正。原视频地址:清风数学建模:https://www.bilibili.com/video/BV1DW411s7wihttps://www.bilibili.com/video/BV1DW411s7wi1.预备知识层次分析法:层次分析法(TheAnalyticHierarchyProcess,AHP)是一种系统分析与决策的综合评价方法,
- 如何评价中国团队发布的通用型 AI Agent 产品 Manus?会成为下一个爆款吗?
互联网之路.
知识点AI人工智能ManusAIAgent
互联网各领域资料分享专区(不定期更新):Sheet正文中国团队发布的通用型AIAgent产品Manus自2025年3月6日发布以来,引发了科技圈和资本市场的双重震动!一、技术突破与产品定位全链路自主执行能力Manus的核心创新在于从“建议型AI”升级为“执行型AI”,通过“规划-执行-验证”多代理协同架构,独立完成复杂任务(如简历筛选、股票分析、旅行规划),并直接交付可用成果。其技术亮点包括云端异
- Claude 3.7 Sona 的崛起
开发者每周简报
人工智能claudesonet
昨天,Anthropic终于发布了万众期待的AI模型——Claude3.7Sona,这款AI让程序员们又惊又喜。发布公告在网络上引发热议,视频下的置顶评论幽默地表达了大家的期待:“大家一直在等这个视频!”一位以风趣且深刻见解著称的AI评测者承认,他已经花费了数百万个token进行测试。他的评价?“Claude3.7真的猛,完全不一样,绝对封神,毫无夸张,真的真的。”这一版本超越了前代产品,提升了代
- Oracle 12c多租户架构总结
weixin_34235135
数据库python
2019独角兽企业重金招聘Python工程师标准>>>Oracle数据库12c的一大创新即是其采用的多租户架构。对于多租户这项新功能,业内的评价褒贬不一。有的声音认为,这项功能的用处不是特别大,但在某些场景或特定的环境下,多租户依然有它的用处。其最大的用处就在于整合数据库。在一些小的系统环境中,多租户的特点就可以显现出来,其可以进行有效的整合,这样可以减少成本、降低管理的复杂度。多租户架构通过对不
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite