这里是测试主函数mainlib.cpp
#include // for snprintf
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "boost/algorithm/string.hpp"
#include "google/protobuf/text_format.h"
#include "leveldb/db.h"
#include "leveldb/write_batch.h"
#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/net.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/util/io.hpp"
#include "caffe/layers/memory_data_layer.hpp"
#include "caffe/caffe.hpp"
#include "opencv2/opencv.hpp"
#include
#include
#include
#include
#include
#include
#include "caffe/Cut2Image.h"
#include "caffe/ocr.h"
#include "caffe/boxDetect.h"
#include "caffe/cutImage.h"
#include "caffe/ctc_ocr.h"
#include "classification.hpp"
#include "caffe/nms.h"
#include
#include
#define K 4//4
using namespace caffe;
using namespace std;
extern "C" {
Classifier *classifier[K];
Classifier *classifier_isCWB;
Detector *detector_textbox;
ICNNPredict* pCNN;
void getBoxImg(IplImage* img,vector &box_imgs, int num,const char* imgfolder)
{
if(img==NULL)
{
cout<< "Unable to decode image "< > detections = detector_textbox->Detect(cv::Mat(img));
// vector > detections = detector_textbox->Multi_Scale_Detect(cv::Mat(img));
vector proposals;
// vector proposals;//nms
//std::vector scores;
/* Print the detection results. */
for (int i = 0; i < detections.size(); ++i)
{
const vector& d = detections[i];
// Detection format: [det_conf, det_x1, det_y2, det_x2, det_y2, det_x3, det_y3, det_x4, det_y4].
CHECK_EQ(d.size(), 9);
const float score = d[0];
float confidence_threshold=0.6;//0.01;
//cout<<"score="<= confidence_threshold)
{
int det_x1=static_cast(d[1] * cv::Mat(img).cols);
int det_y1=static_cast(d[2] * cv::Mat(img).rows);
int det_x2=static_cast(d[3] * cv::Mat(img).cols);
int det_y2=static_cast(d[4] * cv::Mat(img).rows);
int det_x3=static_cast(d[5] * cv::Mat(img).cols);
int det_y3=static_cast(d[6] * cv::Mat(img).rows);
int det_x4=static_cast(d[7] * cv::Mat(img).cols);
int det_y4=static_cast(d[8] * cv::Mat(img).rows);
det_x1 = max(1, min(det_x1, img->width-1));
det_x2 = max(1, min(det_x2, img->width-1));
det_x3 = max(1, min(det_x3, img->width-1));
det_x4 = max(1, min(det_x4, img->width-1));
det_y1 = max(1, min(det_y1, img->height-1));
det_y2 = max(1, min(det_y2, img->height-1));
det_y3 = max(1, min(det_y3, img->height-1));
det_y4 = max(1, min(det_y4, img->height-1));
proposal_type pro;
pro.x1=det_x1;
pro.x2=det_x2;
pro.x3=det_x3;
pro.x4=det_x4;
pro.y1=det_y1;
pro.y2=det_y2;
pro.y3=det_y3;
pro.y4=det_y4;
pro.score=score;
proposals.push_back(pro);
}
}
//cout<<"detection"<& BoxImg)
{
if(Img == NULL)
{
cout << "Image is NULL" << endl;
return;
}
Cut2ImagesByBlank(Img, BoxImg);
for(int i=0; i ImgNames;
char str3[1000];
//strcpy(str3, str1);
//strcat(str3, str2);
//得到图片路径
sprintf(str3,"%s%s",rootname,imgfolder);
cout< box_imgs;
getBoxImg(Img_ipl,box_imgs, i,imgfolder);
}
}
}