原标题:Python和Java解题:最长回文子串
本次题目描述:
给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。
示例 1:
// 输入: "babad"
// 输出: "bab"
// 注意: "aba" 也是一个有效答案。
示例 2:
// 输入: "cbbd"
// 输出: "bb"
解题思路
解法1 - 中心拓展法
由于回文字符串的对称性,所以每次可以选择一个数字作为中心,进行左右拓展来判断是否是回文串。
由于字符串有可能为奇数,有可能为偶数,所以需要从 1 or 2个字符之间开始拓展。
意思就是有 i + i - 1个拓展中心。
则 i 为奇数位,
i + 1为偶数位。
以此为理论依据每次循环往两边拓展即可。
此解法时间复杂度是O(n^2)。
空间复杂度是O(1)。
解法2 - 马拉车算法
第一次接触这个算法,但是想出这个算法的人,确实牛逼。
马拉车算法将时间复杂度提升到了线性。
此算法最初遍历字符,在每个字符两边都插入一个特殊符号,为避免越界,首尾加上特殊标签,例如:
aabbcbbaa -> ^#a#a#b#b#c#b#b#a#a#$
保证当前字符串一定为奇数。
然后左右扩展。
利用一个长度为原字符串长度的数组arr来保存中心扩展的最大个数。
(arr每个元素的下标 - arr[i]) / 2 就是原字符串的字符的下标。
我们设C为字符串中心,R为字符串右边的长度,则有R = C + arr[i]。
这时候就可以用中心扩展法去求。
我们用j表示第i个字符与C对应的下标。
但有以下三种情况会导致arr[j]不正确
长度超出了R
arr[j]到了原字符串的左边界
当i就是为R时
所以遇到以上三种情况,我们需要利用中心拓展法去做边界处理。
JS版
/**
* @param {string} str
* @param {number} left
* @param {number} right
* @return {number}
*/
const expandCenter = (str, left, right) => {
while (left >= 0 && right < str.length && str[left] === str[right]) {
left--
right++
}
return str.slice(left + 1, right)
}
/**
* @param {string} s
* @return {string}
*/
const longestPalindrome1 = (s) => {
if (!s || !s.length) {
return ''
}
let result = ''
for (let i = 0; i < s.length; i++) {
const odd = expandCenter(s, i, i)
const even = expandCenter(s, i, i + 1)
if (odd.length > result.length) {
result = odd
}
if (even.length > result.length) {
result = even
}
}
return result
}
/**
* @param {string} s
* @return {string}
*/
const setTarget = (s) => {
if (!s) {
return ''
}
if (s.length === 0) {
return '^$'
}
let res = '^'
for (let i = 0, len = s.length; i < len; ++i) {
res = res + '#' + s.charAt(i)
}
res += '#$'
return res
}
/**
* @param {string} s
* @return {string}
*/
const longestPalindrome2 = (s) => {
let str = setTarget(s)
let len = str.length
let arr = new Array(len)
let C = 0 // 右边界最大的回文子串的中心
let R = 0 // 子串右边界
for (let i = 1; i < len - 1; ++i) {
let j = 2 * C - i
if (R > i) {
arr[i] = Math.min(R - i, arr[j]) // 右边界处理
} else {
arr[i] = 0
}
// 遇到上述三种特殊情况时,使用中心拓展法
while (str[i + 1 + arr[i]] === str[i - 1 - arr[i]]) {
arr[i]++
}
// 判断是否需要更新R的值
if (i + arr[i] + R) {
C = i
R = i + arr[i]
}
}
let maxLen = 0 // 最大长度
let index = 0 // 中心下标
for (let i = 1; i < len - 1; ++i) {
if (arr[i] > maxLen) {
maxLen = arr[i]
index = i
}
}
let start = (index - maxLen) / 2
return s.substring(start, start + maxLen)
}
TS版
/**
* @解法1
* @思路
* 由于回文字符串的对称性,所以每次可以选择一个数字作为中心,进行左右拓展来判断是否是回文串。
* 由于字符串有可能为奇数,有可能为偶数,所以需要从 1 or 2个字符之间开始拓展。
* 意思就是有 i + i - 1个拓展中心。
* 而且 i 为奇数位
* i + 1为偶数位
* 以此为理论依据每次循环往两边拓展即可。
* 此方式时间复杂度是O(n^2)
*/
/**
* @param {string} str
* @param {number} left
* @param {number} right
* @return {number}
*/
const expandCenter = (str: string, left: number, right: number): string => {
while (left >= 0 && right < str.length && str[left] === str[right]) {
left--
right++
}
return str.slice(left + 1, right)
}
/**
* @param {string} s
* @return {string}
*/
const longestPalindrome1 = (s: string): string => {
if (!s || !s.length) {
return ''
}
let result: string = ''
for (let i: number = 0; i < s.length; i++) {
const odd: string = expandCenter(s, i, i)
const even: string = expandCenter(s, i, i + 1)
if (odd.length > result.length) {
result = odd
}
if (even.length > result.length) {
result = even
}
}
return result
}
const setTarget = (s: string): string => {
if (!s) {
return ''
}
if (s.length === 0) {
return '^$'
}
let res: string = '^'
for (let i: number = 0, len = s.length; i < len; ++i) {
res = res + '#' + s.charAt(i)
}
res += '#$'
return res
}
const longestPalindrome2 = (s: string): string => {
let str: string = setTarget(s)
let len: number = str.length
let arr: number[] = new Array(len)
let C: number = 0 // 右边界最大的回文子串的中心
let R: number = 0 // 子串右边界
for (let i: number = 1; i < len - 1; ++i) {
let j: number = 2 * C - i
if (R > i) {
arr[i] = Math.min(R - i, arr[j]) // 右边界处理
} else {
arr[i] = 0
}
// 遇到上述三种特殊情况时,使用中心拓展法
while (str[i + 1 + arr[i]] == str[i - 1 - arr[i]]) {
arr[i]++
}
// 判断是否需要更新R的值
if (i + arr[i] + R) {
C = i
R = i + arr[i]
}
}
let maxLen: number = 0 // 最大长度
let index: number = 0 // 中心下标
for (let i: number = 1; i < len - 1; ++i) {
if (arr[i] > maxLen) {
maxLen = arr[i]
index = i
}
}
let start: number = (index - maxLen) / 2
return s.substring(start, start + maxLen)
}
PY版
from typing import List
import math
def expandCenter(s: str, left: int, right: int) -> str:
while left >= 0 and right < len(s) and s[left] == s[right]:
left -= 1
right += 1
return s[left + 1: right]
def longestPalindrome1(s: str) -> str:
if not(s) or not(len(s)):
return ''
result: str = ''
for i in range(len(s)):
odd: str = expandCenter(s, i, i)
even: str = expandCenter(s, i, i + 1)
if len(odd) > len(result):
result = odd
if len(even) > len(result):
result = even
return result
def setTarget(s: str) -> str:
if not(s):
return ''
if (len(s) == 0):
return '^$'
res: str = '^'
for i in range(len(s)):
res += '#'
res += s[i]
res += '#$'
return res
def longestPalindrome2(s: str) -> str:
newStr: str = setTarget(s)
l: int = len(newStr)
arr = [0 for _ in range(l)]
C: int = 0
R: int = 0
for i in range(l - 1):
j: int = 2 * C - i
if R > i:
arr[i] = min(R - i, arr[j])
else:
arr[i] = 0
while newStr[i + 1 + arr[i]] == newStr[i - 1 - arr[i]]:
arr[i] += 1
if i + arr[i] + R:
C = i
R = i + arr[i]
maxLen: int = 0
idx: int = 0
for i in range(1, l - 1):
if arr[i] > maxLen:
maxLen = int(arr[i])
idx = i
start: int = int((idx - maxLen) / 2)
return s[start:start + maxLen]
大家有不同思路可以留言!返回搜狐,查看更多
责任编辑: