激光雷达标定入门(3)Autoware官方Demo运行

============================================================

这一步可以根据自己情况省略

============================================================

1 ROSBAG Demo

之前搜了一些教程,发现那些数据包都不能下载,还是官方教程靠谱。链接如下

https://gitlab.com/autowarefoundation/autoware.ai/autoware/-/wikis/ROSBAG-Demo

不想看的直接看这里:

**下载数据**
$ wget https://autoware-ai.s3.us-east-2.amazonaws.com/sample_moriyama_data.tar.gz
$ wget https://autoware-ai.s3.us-east-2.amazonaws.com/sample_moriyama_150324.tar.gz
# or
$ wget https://autoware-ai.s3.us-east-2.amazonaws.com/sample_moriyama_150324.bag2.tar.gz

2 在docker中运行

$ cd ~
$ mkdir .autoware
$ cd .autoware
$ cp ~/shared_dir/sample_moriyama_* .
$ tar zxfv sample_moriyama_150324.tar.gz
$ tar zxfv sample_moriyama_data.tar.gz

3 Run Autoware

$ cd autoware.ai
$ source install/setup.bash
$ roslaunch runtime_manager runtime_manager.launch

按照教程里导入文件,运行即可

在runtime_manager的Simulation Tab页,导入.autoware/sample_moriyama_150324.bag

点击Play按钮,然后点Pause

在runtime_manager的Quick Start Tab页,导入/Autoware/src/autoware/documentation/autoware_quickstart_examples/launch/rosbag_demo目录下的对应配置文件

继续播放,打开rviz,可以看到内容

附一个官方的视频详细教程

  • -----------分割线1

很神奇的一点就是,按照官方的这个教程,我运行起来都有问题,不显示points

map之类的,或者其他问题。不管是有nvidia支持的机器还是没有的机器,试过都不行。然后重新找了这个教程,操作就成功了,而且不可以加载quick start页的那些文件,否则好像是会有冲突。

Autoware自动驾驶平台(第二章):Autoware官方demo运行_在autoware的docker中运行demo_waterfeeling的博客-程序员宅基地 - 程序员宅基地

  • -----------分割线2

然后发现上面这个教程其实也很潦草,解决后面出现的error的时候,在万能的github上找到了一个更详细有解释的版本。

https://github.com/autowarefoundation/autoware_ai/issues/884

并将具体的操作方法贴在这里:

This is the corret sequence to run ndt_matching.

  1. Go to Simulation tab and select a rosbag which includes /points_raw and /nmea_sentence(or /gnss_pose).
  1. Click “Play” and click “Pause” to set rosparam “use_sim_time” true.
  1. Go to Setup tab, select Localizer (Velodyne or Hokuyo 3D URG), input
    parameters related to relative position between the vehicle and
    localizer, push “TF” and push “Vehicle Model” (if you leave the space
    blank, the default model will be loaded.).
  1. Go to Map tab and load pointcloud map and publish TF between /world and /map. (Refer to https://www.youtube.com/watch?v=EJa4P…)
  1. Go to Sensing tab and run voxel_grid_filter to downsample scan data.
  1. Go to Computing tab and run nmea2tfpose to convert /nmea_sentence into /gnss_pose.
  1. Run ndt_mathcing, click “app” and choose GNSS as initial position.
  1. Go to Simulation tab and click “Pause” to replay rosbag.

你可能感兴趣的:(激光雷达标定入门,自动驾驶)