一、什么是 Disruptor
从功能上来看,Disruptor 是实现了“队列”的功能,而且是一个有界队列。那么它的应用场景自然就是“生产者-消费者”模型的应用场合了。
可以拿 JDK 的 BlockingQueue 做一个简单对比,以便更好地认识 Disruptor 是什么。
我们知道 BlockingQueue 是一个 FIFO 队列,生产者(Producer)往队列里发布(publish)一项事件(或称之为“消息”也可以)时,消费者(Consumer)能获得通知;如果没有事件时,消费者被堵塞,直到生产者发布了新的事件。
这些都是 Disruptor 能做到的,与之不同的是,Disruptor 能做更多:
以上的描述虽然简单地指出了 Disruptor 是什么,但对于它“能做什么”还不是那么直截了当。一般性地来说,当你需要在两个独立的处理过程(两个线程)之间交换数据时,就可以使用 Disruptor 。当然使用队列(如上面提到的 BlockingQueue)也可以,只不过 Disruptor 做得更好。
拿队列来作比较的做法弱化了对 Disruptor 有多强大的认识,如果想要对此有更多的了解,可以仔细看看 Disruptor 在其东家 LMAX 交易平台(也是实现者) 是如何作为核心架构来使用的,这方面就不做详述了,问度娘或谷哥都能找到。
二、Disruptor 的核心概念
当消费者等待在SequenceBarrier上时,有许多可选的等待策略,不同的等待策略在延迟和CPU资源的占用上有所不同,可以视应用场景选择:
BusySpinWaitStrategy : 自旋等待,类似Linux Kernel使用的自旋锁。低延迟但同时对CPU资源的占用也多。
BlockingWaitStrategy : 使用锁和条件变量。CPU资源的占用少,延迟大。
SleepingWaitStrategy : 在多次循环尝试不成功后,选择让出CPU,等待下次调度,多次调度后仍不成功,尝试前睡眠一个纳秒级别的时间再尝试。这种策略平衡了延迟和CPU资源占用,但延迟不均匀。
YieldingWaitStrategy : 在多次循环尝试不成功后,选择让出CPU,等待下次调。平衡了延迟和CPU资源占用,但延迟也比较均匀。
PhasedBackoffWaitStrategy : 上面多种策略的综合,CPU资源的占用少,延迟大。
先从了解 Disruptor 的核心概念开始,来了解它是如何运作的。下面介绍的概念模型,既是领域对象,也是映射到代码实现上的核心对象。
三、如何使用 Disruptor
Disruptor 的 API 十分简单,主要有以下几个步骤:
public class LongEvent
{
private long value;
public void set(long value)
{
this.value = value;
}
}
定义事件工厂
事件工厂(Event Factory)定义了如何实例化前面第1步中定义的事件(Event),需要实现接口 com.lmax.disruptor.EventFactory
Disruptor 通过 EventFactory 在 RingBuffer 中预创建 Event 的实例。
一个 Event 实例实际上被用作一个“数据槽”,发布者发布前,先从 RingBuffer 获得一个 Event 的实例,然后往 Event 实例中填充数据,之后再发布到 RingBuffer 中,之后由 Consumer 获得该 Event 实例并从中读取数据。
import com.lmax.disruptor.EventFactory;
public class LongEventFactory implements EventFactory
{
public LongEvent newInstance()
{
return new LongEvent();
}
}
定义事件处理的具体实现
通过实现接口 com.lmax.disruptor.EventHandler
import com.lmax.disruptor.EventHandler;
public class LongEventHandler implements EventHandler
{
public void onEvent(LongEvent event, long sequence, boolean endOfBatch)
{
System.out.println("Event: " + event);
}
}
定义用于事件处理的线程池
Disruptor 通过 java.util.concurrent.ExecutorService 提供的线程来触发 Consumer 的事件处理。例如:
ExecutorService executor = Executors.newCachedThreadPool();
指定等待策略
Disruptor 定义了 com.lmax.disruptor.WaitStrategy 接口用于抽象 Consumer 如何等待新事件,这是策略模式的应用。
Disruptor 提供了多个 WaitStrategy 的实现,每种策略都具有不同性能和优缺点,根据实际运行环境的 CPU 的硬件特点选择恰当的策略,并配合特定的 JVM 的配置参数,能够实现不同的性能提升。
例如,BlockingWaitStrategy、SleepingWaitStrategy、YieldingWaitStrategy 等,其中,
BlockingWaitStrategy 是最低效的策略,但其对CPU的消耗最小并且在各种不同部署环境中能提供更加一致的性能表现;
SleepingWaitStrategy 的性能表现跟 BlockingWaitStrategy 差不多,对 CPU 的消耗也类似,但其对生产者线程的影响最小,适合用于异步日志类似的场景;
YieldingWaitStrategy 的性能是最好的,适合用于低延迟的系统。在要求极高性能且事件处理线数小于 CPU 逻辑核心数的场景中,推荐使用此策略;例如,CPU开启超线程的特性。
WaitStrategy BLOCKING_WAIT = new BlockingWaitStrategy();
WaitStrategy SLEEPING_WAIT = new SleepingWaitStrategy();
WaitStrategy YIELDING_WAIT = new YieldingWaitStrategy();
启动 Disruptor
EventFactory eventFactory = new LongEventFactory();
ExecutorService executor = Executors.newSingleThreadExecutor();
int ringBufferSize = 1024 * 1024; // RingBuffer 大小,必须是 2 的 N 次方;
Disruptor disruptor = new Disruptor(eventFactory,
ringBufferSize, executor, ProducerType.SINGLE,
new YieldingWaitStrategy());
EventHandler eventHandler = new LongEventHandler();
disruptor.handleEventsWith(eventHandler);
disruptor.start();
发布事件
Disruptor 的事件发布过程是一个两阶段提交的过程:
第一步:先从 RingBuffer 获取下一个可以写入的事件的序号;
第二步:获取对应的事件对象,将数据写入事件对象;
第三部:将事件提交到 RingBuffer;
事件只有在提交之后才会通知 EventProcessor 进行处理;
// 发布事件;
RingBuffer ringBuffer = disruptor.getRingBuffer();
long sequence = ringBuffer.next();//请求下一个事件序号;
try {
LongEvent event = ringBuffer.get(sequence);//获取该序号对应的事件对象;
long data = getEventData();//获取要通过事件传递的业务数据;
event.set(data);
} finally{
ringBuffer.publish(sequence);//发布事件;
}
注意,最后的 ringBuffer.publish 方法必须包含在 finally 中以确保必须得到调用;如果某个请求的 sequence 未被提交,将会堵塞后续的发布操作或者其它的 producer。
Disruptor 还提供另外一种形式的调用来简化以上操作,并确保 publish 总是得到调用。
tatic class Translator implements EventTranslatorOneArg{
@Override
public void translateTo(LongEvent event, long sequence, Long data) {
event.set(data);
}
}
public static Translator TRANSLATOR = new Translator();
public static void publishEvent2(Disruptor disruptor) {
// 发布事件;
RingBuffer ringBuffer = disruptor.getRingBuffer();
long data = getEventData();//获取要通过事件传递的业务数据;
ringBuffer.publishEvent(TRANSLATOR, data);
}
此外,Disruptor 要求 RingBuffer.publish 必须得到调用的潜台词就是,如果发生异常也一样要调用 publish ,那么,很显然这个时候需要调用者在事件处理的实现上来判断事件携带的数据是否是正确的或者完整的,这是实现者应该要注意的事情。
关闭 Disruptor
disruptor.shutdown();//关闭 disruptor,方法会堵塞,直至所有的事件都得到处理;
executor.shutdown();//关闭 disruptor 使用的线程池;如果需要的话,必须手动关闭, disruptor 在 shutdown 时不会自动关闭;