[Xarray] 1. 数据结构

Xarray的数据结构

参考Xarray官方文档,Python气象数据处理进阶之Xarray(1):Xarray的数据结构

数据结构

在Xarray中,数据是由结构和标签的,分为以下几种:

1.DataArray:

带有标注或命名维度的多维数组。DataArray将metadata(例如:维名称,坐标和属性)添加到基础的未标记的数据结构,例如numpy和Dask数组。

2.Datasets:

具有类似字典结构的尺寸对其的DataArray对象的集合。因此,可以在单个DataArray的维度上执行的大多数操作都可以在Dataset上执行。

Dataset是多个DataArray的集合

3.Variable:

类似于NetCDF的变量。由dimensions,data和attributes组成。variable和numpy数组之间的主要功能区别在于,对variable的数字运算可以通过维名称实现数组广播。

通俗的讲,variables < DataArray < Dataset (<指包含于)。这种解释不完全正确,但是初学者可以这样理解。

Xarray中的数据结构如何被识别和标记

Xarray通过对维命名的操作实现数据筛选和处理,实现数据的标记和命名通过以下几个定义实现:

*Dimension: 每一轴的维名称(e.g.,('x','y','z'))。

*Coordinate: 坐标或刻度。类似于字典的序列,将每个点标记。比如说dimension是纬度,那么对应的coordinate就是纬度坐标(90°N,89°N,88°N……89°S,90°S)。

*Index: 索引号,也可以说是位置标号。a[0]代表a数组的一个数,0就是index。


#CN05.1格点资料

f = xr.open_dataset('CN05.1_Tmax_1961_2017_daily_05x05.nc')

print(f)

#

#Dimensions: (latitude: 82, longitude: 142, time: 20574)

#Coordinates:

# * longitude (longitude) float64 69.75 70.25 70.75 71.25 ... 139.2 139.8 140.2

# * latitude (latitude) float64 14.75 15.25 15.75 16.25 ... 54.25 54.75 55.25

# * time (time) datetime64[ns] 1961-01-01 1961-01-02 ... 2017-04-30

#Data variables:

# tmax (time, latitude, longitude) float32 ...

#Attributes:

# CDI: Climate Data Interface version 1.6.5rc3 (http://code.zmaw.d...

# Conventions: CF-1.4

# history: Thu Aug 23 09:34:52 2018: cdo -r remapcon,grid05x05 daily/0...

# CDO: Climate Data Operators version 1.6.5rc3 (http://code.zmaw.d...

可以看到,该文件是一个Datasets,里面含有变量:Data Variables,数据集的维度有经度纬度和时间,各自有各自的坐标Coordinates,同样数据集还有一些属性来表明数据集信息。

我们可以通过:


print(f.variables)

print(f.dims)

print(f.coords)

来分别查看数据集中包含的变量,维,坐标。

再比如NCEP的位势高度资料:


f = xr.open_dataset('hgt.1948.nc')

print(f)

#

#Dimensions: (lat: 73, level: 17, lon: 144, time: 366)

#Coordinates:

# * level (level) float32 1000.0 925.0 850.0 700.0 ... 50.0 30.0 20.0 10.0

# * lat (lat) float32 90.0 87.5 85.0 82.5 80.0 ... -82.5 -85.0 -87.5 -90.0

# * lon (lon) float32 0.0 2.5 5.0 7.5 10.0 ... 350.0 352.5 355.0 357.5

# * time (time) datetime64[ns] 1948-01-01 1948-01-02 ... 1948-12-31

#Data variables:

# hgt (time, level, lat, lon) float32 ...

#Attributes:

# Conventions: COARDS

# title: mean daily NMC Reanalysis (1948)

# description: Data is from NMC initialized reanalysis\n(4x/day). It co...

# platform: Model

# history: created 99/05/11 by Hoop (netCDF2.3)

# References: (http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reana...

# dataset_title: NCEP-NCAR Reanalysis 1

基本同上。

需要说明的是,ncl数据中存在short格式,在读取时需要使用short2flt()函数,但是在Python中不存在short格式,默认均为float,无需考虑这一点。

如何创建一个DataArray

有时我们通过其他手段读取了相关数据,但是数据是np.array格式的,我们需要将其转换为DataArray,亦或我们需要输出一个NC文件,需要将计算后的数组转为DataArray格式,这就用到了创建的方法。

创建一个DataArray需要什么?

1.Data: 数据,可以是numpy ndarray,series,DataFrame,pandas.panel等格式

2.coords: 坐标列表或字典

如果是列表,则应为元组列表。其中第一个元素为dimension name,第二个元素是对应的坐标array_like对象。

用字典格式比较好

3.dims: 维名称列表

如果省略,并且coords是元组列表,则维度名称取自coords。

4.attrs: 属性

5.names: 变量名

以上,除了data外,都不是必须的。

创建示例如下:


data = np.array([[1,2,3],[4,5,6]])

level = ['500', '850', '1000']

times = pd.date_range('2000-01-01', periods=2)

foo = xr.DataArray(data, coords=[times, level], dims=['time', 'level'])

print(foo)

#

#array([[1, 2, 3],

# [4, 5, 6]])

#Coordinates:

# * time (time) datetime64[ns] 2000-01-01 2000-01-02

# * level (level) 

上面提到,除了data以外,其他都是不必要的


foo = xr.DataArray(data)

print(foo)

#

#array([[1, 2, 3],

# [4, 5, 6]])

#Dimensions without coordinates: dim_0, dim_1

如果是从一个DataFrame数据转化为DataArray的话(这种操作通常是为了将Pandas和Xarray联合使用):


df = pd.DataFrame({'x': [0, 1], 'y': [2, 3]}, index=['a', 'b'])

df.index.name = 'abc'

df.columns.name = 'xyz'

print(df)

#xyz x y

#abc

#a 0 2

#b 1 3

print(xr.DataArray(df))

#

#array([[0, 2],

# [1, 3]])

#Coordinates:

# * abc (abc) object 'a' 'b'

# * xyz (xyz) object 'x' 'y'

会自动识别行列的名称和序号。

官方文档还有更复杂的例子,需要的话再去官网查看。

在创建了数据之后,我们同样可以使用相关的操作获取DataArray的各种信息:


a = foo.values

a = foo.dims

a = foo.coords

a = foo.attrs

如果想对DataArray的值修改可以通过以下两种方法:


foo.values = foo.values+1

foo = foo+1

两种结果是等价的,但官方只给出了第一种方法。

  • 通过指令foo.attrs['units'] = 'meters'赋予属性信息,比如给一个单位、备注等等。

  • 通过指令foo.name = 'hgt'赋予名称信息。

*通过指令foo.rename('temperature')改名,比如通过hgt计算得到了一个新变量,需要改名,就可以用这个指令。

在得到一个DataArray后,用于画图时,比如我们需要获取它的经度和纬度(在这里,刚刚的例子是时间和高度),那么可以直接通过


foo.coords['time']

foo['time']

这两种方式取出坐标信息。

要修改或者删除某坐标信息的话,原理和修改数据是一样的:


foo['time'] = pd.date_range('1999-01-02',periods = 2)

del foo['time']

如何创建一个Dataset

官网给出一个以气候数据为例的Dataset结构:

image

display: inline-block;

color: #999;

padding: 2px;">Dataset数据结构

一个数据集,包含了数据主体(Temperature,Precipitation),维度坐标(latitude,longitude)。

根据官网的例子,一个Dataset是这样创建的,实际上与DataArray类似:


temp = 15 + 8 * np.random.randn(2, 2, 3)

precip = 10 * np.random.rand(2, 2, 3)

lon = [[-99.83, -99.32], [-99.79, -99.23]]

lat = [[42.25, 42.21], [42.63, 42.59]]

ds = xr.Dataset({'temperature': (['x', 'y', 'time'], temp),

'precipitation': (['x', 'y', 'time'], precip)},

coords={'lon': (['x', 'y'], lon),

'lat': (['x', 'y'], lat),

'time': pd.date_range('2014-09-06', periods=3),

'reference_time': pd.Timestamp('2014-09-05')})

#

#Dimensions: (time: 3, x: 2, y: 2)

#Coordinates:

# lon (x, y) float64 -99.83 -99.32 -99.79 -99.23

# lat (x, y) float64 42.25 42.21 42.63 42.59

# * time (time) datetime64[ns] 2014-09-06 2014-09-07 2014-09-08

# reference_time datetime64[ns] 2014-09-05

#Dimensions without coordinates: x, y

#Data variables:

# temperature (x, y, time) float64 15.09 7.656 20.82 ... 2.477 10.53 17.56

# precipitation (x, y, time) float64 3.444 2.694 6.921 ... 7.351 2.099 5.972

实际上这个例子与我们通常接触的不太一样,因为大部分数据的lat和lon都是一维的。

对Dataset的操作和DataArray基本一致,不再重复。

你可能感兴趣的:([Xarray] 1. 数据结构)