我们日常做分页需求时,一般会用limit实现,但是当偏移量特别大的时候,查询效率就变得低下。本文将分四个方案,讨论如何优化MySQL百万数据的深分页问题,并附上最近优化生产慢SQL的实战案例。
先看下表结构哈:
CREATE TABLE account (
id int(11) NOT NULL AUTO_INCREMENT COMMENT '主键Id',
name varchar(255) DEFAULT NULL COMMENT '账户名',
balance int(11) DEFAULT NULL COMMENT '余额',
create_time datetime NOT NULL COMMENT '创建时间',
update_time datetime NOT NULL ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间',
PRIMARY KEY (id),
KEY idx_name (name),
KEY idx_update_time (update_time) //索引
) ENGINE=InnoDB AUTO_INCREMENT=1570068 DEFAULT CHARSET=utf8 ROW_FORMAT=REDUNDANT COMMENT='账户表';
假设深分页的执行SQL如下:
select id,name,balance from account where update_time> '2020-09-19' limit 100000,10;
这个SQL的执行时间如下:
执行完需要0.742秒,深分页为什么会变慢呢?如果换成 limit 0,10
,只需要0.006秒哦
我们先来看下这个SQL的执行流程:
SQL变慢原因有两个:
limit 100000,10
,就会扫描100010行,而limit 0,10
,只扫描10行。limit 100000,10
扫描更多的行数,也意味着回表更多的次数。因为以上的SQL,回表了100010次,实际上,我们只需要10条数据,也就是我们只需要10次回表其实就够了。因此,我们可以通过减少回表次数来优化。
把条件转移到主键索引树
如果我们把查询条件,转移回到主键索引树,那就可以减少回表次数啦。转移到主键索引树查询的话,查询条件得改为主键id
了,之前SQL的update_time
这些条件咋办呢?抽到子查询那里嘛~
子查询那里怎么抽的呢?因为二级索引叶子节点是有主键ID的,所以我们直接根据update_time
来查主键ID即可,同时我们把 limit 100000
的条件,也转移到子查询,完整SQL如下:
select id,name,balance FROM account where id >= (select a.id from account a where a.update_time >= '2020-09-19' limit 100000, 1) LIMIT 10;
查询效果一样的,执行时间只需要0.038秒!
具体执行流程:
延迟关联的优化思路,跟子查询的优化思路其实是一样的:都是把条件转移到主键索引树,然后减少回表。不同点是,延迟关联使用了inner join代替子查询。
优化后的SQL如下:
SELECT acct1.id,acct1.name,acct1.balance FROM account acct1 INNER JOIN (SELECT a.id FROM account a WHERE a.update_time >= '2020-09-19' ORDER BY a.update_time LIMIT 100000, 10) AS acct2 on acct1.id= acct2.id;
查询思路就是,先通过idx_update_time
二级索引树查询到满足条件的主键ID,再与原表通过主键ID内连接,这样后面直接走了主键索引了,同时也减少了回表。
limit 深分页问题的本质原因就是:偏移量(offset)越大,mysql就会扫描越多的行,然后再抛弃掉。这样就导致查询性能的下降。
其实我们可以采用标签记录法,就是标记一下上次查询到哪一条了,下次再来查的时候,从该条开始往下扫描。就好像看书一样,上次看到哪里了,你就折叠一下或者夹个书签,下次来看的时候,直接就翻到啦。
假设上一次记录到100000,则SQL可以修改为:
select id,name,balance FROM account where id > 100000 order by id limit 10;
这样的话,后面无论翻多少页,性能都会不错的,因为命中了id
索引。但是这种方式有局限性:需要一种类似连续自增的字段。