2023年11月16日
向量的长度也称为向量的二范数
[!quote]- 长度的定理
设 x , y , z ∈ C n , λ ∈ C {x,y,z\in \mathbb C^n \,\,,\,\, \lambda\in \mathbb C} x,y,z∈Cn,λ∈C
- 非负性:长度大于等于 0 {0} 0 ,仅当向量为 0 {0} 0 时取等。
- 齐次性: ∣ ∣ λ x ∣ ∣ = ∣ λ ∣ ⋅ ∣ ∣ x ∣ ∣ || \lambda x||=| \lambda| \cdot ||x|| ∣∣λx∣∣=∣λ∣⋅∣∣x∣∣。
- 三角不等式性: ∣ ∣ x + y ∣ ∣ ≤ ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ ||x+y||\le||x||+||y|| ∣∣x+y∣∣≤∣∣x∣∣+∣∣y∣∣。
定义 设 ∣ ∣ ⋅ ∣ ∣ {|| \cdot ||} ∣∣⋅∣∣ 是 C n { \mathbb C^n } Cn 上的一个泛函,满足
则称 ∣ ∣ ⋅ ∣ ∣ {|| \cdot ||} ∣∣⋅∣∣ 是 C n { \mathbb C^n} Cn 上的一个向量范数。
定理 对任意 x , y ∈ C n {x,y\in \mathbb C^n} x,y∈Cn ,有
设 x ∈ C n {x\in \mathbb C^n} x∈Cn ,定义
如果 A ∈ C n × n {A\in \mathbb C^{n \times n}} A∈Cn×n 是Hermit正定矩阵,则
∣ ∣ x ∣ ∣ A = x H A x , x ∈ C n {||x||_A= \sqrt{x^ \mathrm H Ax}\,\,,\,\, x\in \mathbb C^n} ∣∣x∣∣A=xHAx,x∈Cn
也是 C n { \mathbb C^n } Cn 上的向量范数。
定义 设 ∣ ∣ ⋅ ∣ ∣ v 1 {|| \cdot ||_{v1}} ∣∣⋅∣∣v1 与 ∣ ∣ ⋅ ∣ ∣ v 2 {|| \cdot ||_{v2}} ∣∣⋅∣∣v2 是 C n { \mathbb C^n} Cn 上两个向量范数,如果存在常数 c 1 , c 2 > 0 {c_1,c_2>0} c1,c2>0 使得 ∀ x ∈ C n { \forall x\in \mathbb C^n} ∀x∈Cn 有
c 1 ∣ ∣ x ∣ ∣ v 1 ≤ ∣ ∣ x ∣ ∣ v 2 ≤ c 2 ∣ ∣ x ∣ ∣ v 1 c_1||x||_{v1}\le||x||_{v2}\le c_2||x||_{v1} c1∣∣x∣∣v1≤∣∣x∣∣v2≤c2∣∣x∣∣v1
则称向量范数 ∣ ∣ ⋅ ∣ ∣ v 1 {|| \cdot ||_{v1}} ∣∣⋅∣∣v1 与 ∣ ∣ ⋅ ∣ ∣ v 2 {|| \cdot ||_{v2}} ∣∣⋅∣∣v2 等价。
理解 向量空间所有向量的 ∣ ∣ ⋅ ∣ ∣ v 2 {|| \cdot ||_{v2}} ∣∣⋅∣∣v2 范数不会小于其 ∣ ∣ ⋅ ∣ ∣ v 1 {|| \cdot ||_{v1}} ∣∣⋅∣∣v1 范数的 c 1 {c_1} c1 倍,也不会大于其 ∣ ∣ ⋅ ∣ ∣ v 1 {|| \cdot ||_{v1}} ∣∣⋅∣∣v1 范数的 c 2 {c_2} c2 倍。同一个向量的两个范数要么同时大,要么同时小,但不一定成比例。
向量范数的等价实际上是等价关系
定理 C n {\mathbb C^n} Cn 上的所有向量范数等价。
向量范数在向量序列极限概念上的应用
lim k → ∞ x ( k ) = x ⟺ lim k → ∞ ∣ ∣ x ( k ) − x ∣ ∣ = 0 \lim_{k\to\infty}x^{(k)}=x \iff \lim_{k\to\infty}||x^{(k)}-x||=0 k→∞limx(k)=x⟺k→∞lim∣∣x(k)−x∣∣=0
定义 设 ∣ ∣ ⋅ ∣ ∣ {|| \cdot ||} ∣∣⋅∣∣ 是 C n × n { \mathbb C^{n \times n} } Cn×n 上的一个泛函,满足
则称 ∣ ∣ ⋅ ∣ ∣ {|| \cdot ||} ∣∣⋅∣∣ 是 C n × n { \mathbb C^{n \times n}} Cn×n 上的一个矩阵范数。
设 A = ( a i j ) ∈ C n × n {A=(a_{ij})\in \mathbb C^{n \times n}} A=(aij)∈Cn×n ,定义
定义 设 ∣ ∣ ⋅ ∣ ∣ m {|| \cdot ||_{m}} ∣∣⋅∣∣m 是 C n × n { \mathbb C^{n \times n} } Cn×n 上的矩阵范数, ∣ ∣ ⋅ ∣ ∣ v {|| \cdot ||_{v}} ∣∣⋅∣∣v 是 C n { \mathbb C^n} Cn 上的向量范数,如果 ∀ A ∈ C n × n , x ∈ C n { \forall A\in \mathbb C^{n \times n},x\in \mathbb C^n} ∀A∈Cn×n,x∈Cn
∣ ∣ A x ∣ ∣ v ≤ ∣ ∣ A ∣ ∣ m ⋅ ∣ ∣ x ∣ ∣ v ||Ax||_v\le ||A||_m \cdot ||x||_v ∣∣Ax∣∣v≤∣∣A∣∣m⋅∣∣x∣∣v
总是成立,则称矩阵范数 ∣ ∣ ⋅ ∣ ∣ m {|| \cdot ||_{m}} ∣∣⋅∣∣m 与向量范数 ∣ ∣ ⋅ ∣ ∣ v {|| \cdot ||_{v}} ∣∣⋅∣∣v 相容。下标m表示matrix,v表示vector。
定理
对于任意的矩阵范数,都可以找到与之相容的向量范数。
设 ∣ ∣ ⋅ ∣ ∣ m {|| \cdot ||_m} ∣∣⋅∣∣m 是 C n × n { \mathbb C^{n \times n}} Cn×n 上一个矩阵范数,取 a ∈ C n {a\in \mathbb C^n} a∈Cn ,且 a ≠ 0 {a\ne0} a=0 ,定义
∣ ∣ x ∣ ∣ v = ∣ ∣ x a H ∣ ∣ m , x ∈ C n ||x||_v=||xa^ \mathrm H||_m \,\,,\,\, x\in \mathbb C^n ∣∣x∣∣v=∣∣xaH∣∣m,x∈Cn
可以证明,它是 C n { \mathbb C^n } Cn 上的向量范数,称为由矩阵范数 ∣ ∣ ⋅ ∣ ∣ m {|| \cdot ||_m} ∣∣⋅∣∣m 所诱导的向量范数。
定理 C n × n {\mathbb C^{n \times n} } Cn×n 上任意一矩阵范数 ∣ ∣ ⋅ ∣ ∣ m {|| \cdot ||_m} ∣∣⋅∣∣m 与他所诱导的向量范数 ∣ ∣ ⋅ ∣ ∣ v {|| \cdot ||_v} ∣∣⋅∣∣v 相容。
∣ ∣ A x ∣ ∣ v = ∣ ∣ ( A x ) a H ∣ ∣ m = ∣ ∣ A ( x a H ) ∣ ∣ m ≤ ∣ ∣ A ∣ ∣ m ∣ ∣ ( x a H ) ∣ ∣ m = ∣ ∣ A ∣ ∣ m ∣ ∣ x ∣ ∣ v \begin{align*} ||Ax||_v=&||(Ax)a^ \mathrm H||_m=||A(xa^ \mathrm H)||_m \\ \\ \le&||A||_m||(xa^ \mathrm H)||_m=||A||_m||x||_v \end{align*} ∣∣Ax∣∣v=≤∣∣(Ax)aH∣∣m=∣∣A(xaH)∣∣m∣∣A∣∣m∣∣(xaH)∣∣m=∣∣A∣∣m∣∣x∣∣v
设 ∣ ∣ ⋅ ∣ ∣ v {|| \cdot ||_v} ∣∣⋅∣∣v 是 C n { \mathbb C^n} Cn 上一个向量范数,定义
∣ ∣ A ∣ ∣ m = max ∣ ∣ x ∣ ∣ v = 1 ∣ ∣ A x ∣ ∣ v = max x ≠ 0 ∣ ∣ A x ∣ ∣ v ∣ ∣ x ∣ ∣ v , A ∈ C n × n ||A||_m=\max_{||x||_v=1}||Ax||_v=\max_{x\ne 0} \frac{||Ax||_v}{||x||_v} \,\,,\,\, A\in \mathbb C^{n \times n} ∣∣A∣∣m=∣∣x∣∣v=1max∣∣Ax∣∣v=x=0max∣∣x∣∣v∣∣Ax∣∣v,A∈Cn×n
( ∣ ∣ A x ∣ ∣ v ∣ ∣ x ∣ ∣ v = ∣ ∣ 1 ∣ ∣ x ∣ ∣ v A x ∣ ∣ v = ∣ ∣ A ( 1 ∣ ∣ x ∣ ∣ v x ) ∣ ∣ v ) \bigg( \frac{||Ax||_v}{||x||_v}= \bigg| \bigg| \frac{1}{||x||_{v}}Ax \bigg| \bigg| _{v}= \bigg| \bigg| A \bigg( \frac{1}{||x||_{v }}x \bigg) \bigg| \bigg|_v \bigg) (∣∣x∣∣v∣∣Ax∣∣v= ∣∣x∣∣v1Ax v= A(∣∣x∣∣v1x) v)
称为由向量范数 ∣ ∣ ⋅ ∣ ∣ v { || \cdot ||_{ v}} ∣∣⋅∣∣v 所诱导的矩阵范数(从属范数)。
定理 C n {\mathbb C^{n} } Cn 上任意一向量范数 ∣ ∣ ⋅ ∣ ∣ v {|| \cdot ||_v} ∣∣⋅∣∣v 与他所诱导的矩阵范数 ∣ ∣ ⋅ ∣ ∣ m {|| \cdot ||_m} ∣∣⋅∣∣m 相容。
将向量范数 ∣ ∣ ⋅ ∣ ∣ 1 { || \cdot ||_{1 }} ∣∣⋅∣∣1, ∣ ∣ ⋅ ∣ ∣ 2 { || \cdot ||_{2 }} ∣∣⋅∣∣2, ∣ ∣ ⋅ ∣ ∣ ∞ { || \cdot ||_{\infty }} ∣∣⋅∣∣∞ 诱导的矩阵范数分别记为 ∣ ∣ ⋅ ∣ ∣ 1 { || \cdot ||_{1 }} ∣∣⋅∣∣1, ∣ ∣ ⋅ ∣ ∣ 2 { || \cdot ||_{2 }} ∣∣⋅∣∣2, ∣ ∣ ⋅ ∣ ∣ ∞ { || \cdot ||_{\infty }} ∣∣⋅∣∣∞ ,则有在同济大学《数值分析》或者一些数值分析速通网课里面提到的矩阵范数。
列范数
相容关系如下:
∣ ∣ A x ∣ ∣ 1 ≤ ∣ ∣ A ∣ ∣ 1 ⋅ ∣ ∣ x ∣ ∣ 1 ∣ ∣ A x ∣ ∣ ∞ ≤ ∣ ∣ A ∣ ∣ ∞ ⋅ ∣ ∣ x ∣ ∣ ∞ ∣ ∣ A x ∣ ∣ 2 ≤ ∣ ∣ A ∣ ∣ 2 ⋅ ∣ ∣ x ∣ ∣ 2 ∣ ∣ A x ∣ ∣ 2 ≤ ∣ ∣ A ∣ ∣ F ⋅ ∣ ∣ x ∣ ∣ 2 \begin{align*} ||Ax||_1\le& ||A||_1 \cdot ||x||_1\\ \\ ||Ax||_\infty\le& ||A||_\infty \cdot ||x||_\infty\\ \\ ||Ax||_2\le& ||A||_2 \cdot ||x||_2\\ \\ ||Ax||_2\le& ||A||_F \cdot ||x||_2\\ \\ \end{align*} ∣∣Ax∣∣1≤∣∣Ax∣∣∞≤∣∣Ax∣∣2≤∣∣Ax∣∣2≤∣∣A∣∣1⋅∣∣x∣∣1∣∣A∣∣∞⋅∣∣x∣∣∞∣∣A∣∣2⋅∣∣x∣∣2∣∣A∣∣F⋅∣∣x∣∣2
设 A ∈ C n × n {A\in \mathbb C^{n \times n} } A∈Cn×n ,则
定理 C n × n {\mathbb C^{n \times n} } Cn×n 上所有矩阵范数等价。
矩阵范数的相容性 ∀ A ∈ C m × n {\forall A\in \mathbb C^{m \times n}} ∀A∈Cm×n , B ∈ C n × l {B\in \mathbb C^{n \times l}} B∈Cn×l
∣ ∣ A B ∣ ∣ ≤ ∣ ∣ A ∣ ∣ ⋅ ∣ ∣ B ∣ ∣ || AB ||_{ }\le || A ||_{ } \cdot || B ||_{ } ∣∣AB∣∣≤∣∣A∣∣⋅∣∣B∣∣
矩阵范数与向量范数的相容性 ∀ A ∈ C m × n {\forall A\in \mathbb C^{m \times n}} ∀A∈Cm×n , x ∈ C n {x\in \mathbb C^{n}} x∈Cn
∣ ∣ A x ∣ ∣ ≤ ∣ ∣ A ∣ ∣ ⋅ ∣ ∣ x ∣ ∣ || Ax ||_{ }\le || A ||_{ } \cdot || x ||_{ } ∣∣Ax∣∣≤∣∣A∣∣⋅∣∣x∣∣
从属范数
∣ ∣ A ∣ ∣ = max ∣ ∣ x ∣ ∣ v = 1 ∣ ∣ A x ∣ ∣ v = max x ≠ 0 ∣ ∣ A x ∣ ∣ v ∣ ∣ x ∣ ∣ v , A ∈ C m × n || A ||_{ }= \max_{|| x ||_{v }=1} || Ax ||_{ v}=\max_{x\ne 0} \frac{|| Ax ||_{ v}}{|| x ||_{ v}} \,\,,\,\, A\in \mathbb C^{m \times n} ∣∣A∣∣=∣∣x∣∣v=1max∣∣Ax∣∣v=x=0max∣∣x∣∣v∣∣Ax∣∣v,A∈Cm×n
其中 ∣ ∣ A x ∣ ∣ v { || Ax ||_{v }} ∣∣Ax∣∣v 是 C m { \mathbb C^m } Cm 上的范数, ∣ ∣ x ∣ ∣ v { || x ||_{ v}} ∣∣x∣∣v 是 C n { \mathbb C^n} Cn 上的范数。
对任意 A ∈ C m × n {A\in \mathbb C^{m \times n} } A∈Cm×n ,常用的矩阵范数有:
部分性质: