✨个人主页: 熬夜学编程的小林
系列专栏: 【C语言详解】 【数据结构详解】
C语言提供了丰富的数据类型来描述生活中的各种数据。使用整型类型来描述整数,使用字符类型来描述字符,使用浮点型类型来描述小数。
所谓“类型”,就是相似的数据所拥有的共同特征,编译器只有知道了数据的类型,才知道怎么操作数据。
下面盘点⼀下C语言提供的各种数据类型,本节主要探讨内置数据类型。
//短整型
short [int]
[signed] short [int]//有符号
unsigned short [int]//无符号
//整型
int
[signed] int//有符号
unsigned int//无符号
//⻓整型
long [int]
[signed] long [int]
unsigned long [int]
//更⻓的整型
//C99中引⼊
long long [int]
[signed] long long [int]
unsigned long long [int]
float //单精度
double //双精度
long double //长精度
char //字符型
[signed] char //有符号的字符型
unsigned char //⽆符号的字符型
C语言原来并没有为布尔值单独设置⼀个类型,而是使用整数 0 表示假,非零值表示真。
在 C99 中也引入了 布尔类型 ,是专门表示真假的。
_Bool
布尔类型的使用得包含头文件
布尔类型变量的取值是: true 或者 false .
#define bool _Bool //用_Bool代替bool类型
#define false 0
#define true 1
代码演示
_Bool flag = true;
if (flag)//为真则执行
printf("i like C\n");
每⼀种数据类型都有自己的长度,使用不同的数据类型,能够创建出长度不同的变量,变量长度的不同,存储的数据范围就有所差异。
sizeof 是⼀个关键字,也是操作符,专门是用来计算sizeof的操作符数的类型长度的,单位是字节。
sizeof 操作符的操作数可以是类型,也可是变量或者表达式。
sizeof( 类型 )
sizeof 表达式
sizeof 的操作数如果不是类型,是表达式的时候,可以省略掉后边的括号的。
sizeof 后边的表达式是不真实参与运算的,根据表达式的类型来得出大小。
sizeof 的计算结果是 size_t 类型的。
测试
此处的%zd为无符号整数的占位符。
sizeof 运算符的返回值,C语言只规定是无符号整数,并没有规定具体的类型,而是留给系统自己去决定, sizeof 到底返回什么类型。不同的系统中,返回值的类型有可能是unsigned int ,也有可能是 unsigned long ,甚至是 unsigned long long ,
对应的 printf() 占位符分别是 %u 、 %lu 和 %llu 。这样不利于程序的可移植性。
C语言提供了⼀个解决方法,创造了⼀个类型别名 size_t ,用来统⼀表示 sizeof 的返回值类型。对应当前系统的 sizeof 的返回值类型,可能是 unsigned int ,也可能是unsigned long long。
比如
#include
int main()
{
int a = 10;
printf("%zd\n", sizeof(a));
printf("%zd\n", sizeof a);//a是变量的名字,可以省略掉sizeof后边的()
printf("%zd\n", sizeof(int));
printf("%zd\n", sizeof(3 + 3.5));
return 0;
}
此处为默认的浮点数类型,默认的浮点数类型为double类型,所以为8字节。
#include
int main()
{
printf("%zd\n", sizeof(char));
printf("%zd\n", sizeof(_Bool));
printf("%zd\n", sizeof(short));
printf("%zd\n", sizeof(int));
printf("%zd\n", sizeof(long));
printf("%zd\n", sizeof(long long));
printf("%zd\n", sizeof(float));
printf("%zd\n", sizeof(double));
printf("%zd\n", sizeof(long double));
return 0;
}
在VS2022X64配置下的输出:
1
1
2
4
4
8
4
8
8
//测试:sizeof中表达式不计算 变量的表达式(运算会按照结果传入)
#include
int main()
{
short s = 2;
int b = 10;
printf("%d\n", sizeof(s = b+1));
printf("s = %d\n", s);
return 0;
}
sizeof 在代码进行编译的时候,就根据表达式的类型确定了返回值,而表达式的执行却要在程序运行期间才能执行,在编译期间已经将sizeof处理掉了,所以在运行期间就不会执行表达式了。
C语言使用 signed 和 unsigned 关键字修饰字符型和整型类型的。
signed 关键字,表示⼀个类型带有正负号,包含负值;
unsigned 关键字,表示该类型不带有正负号,只能表示零和正整数。
对于 int 类型,默认是带有正负号的,也就是说 int 等同于 signed int 。
由于这是默认情况,关键字 signed ⼀般都省略不写,但是写了也不算错。
signed int a;
// 等同于int a;
int 类型也可以不带正负号,只表示非负整数。这时就必须使用关键字 unsigned 声明变量。
unsigned int a;
整数变量声明为 unsigned 的好处是,同样长度的内存能够表示的最大整数值,增大了⼀倍。
比如,16位的 signed short int 的取值范围是:-32768 ~ 32767,最大是32767;而unsigned short int 的取值范围是:0~65535,最大值增大到了65,535。32位的 signed int 的取值范围可以参看 limits.h 中给出的定义。
下面的定义是VS2022环境中,limits.h中相关定义。
#define SHRT_MIN (-32768) //有符号16位整型的最⼩值
#define SHRT_MAX 32767 //有符号16位整型的最⼤值
#define USHRT_MAX 0xffff //⽆符号16位整型的最⼤值
#define INT_MIN (-2147483647 - 1) //有符号整型的最⼩值
#define INT_MAX 2147483647 //有符号整型的最⼤值
unsigned int 里面的 int 可以省略,所以上面的变量声明也可以写成下面这样。
unsigned a;
字符类型 char 也可以设置 signed 和 unsigned 。
signed char c; // 范围为 -128 到 127
unsigned char c; // 范围为 0 到 255
注意,C语言规定 char 类型默认是否带有正负号,由当前系统决定。
这就是说, char 不等同于 signed char ,它有可能是 signed char ,也有可能是unsigned char 。
这⼀点与 int 不同, int 就是等同于 signed int 。
上述的数据类型很多,尤其数整型类型就有short、int、long、long long四种,为什么呢?
其实每⼀种数据类型有自己的取值范围,也就是存储的数值的最大值和最小值的区间,有了丰富的类型,我们就可以在适当的场景下去选择适合的类型。如果要查看当前系统上不同数据类型的极限值:
limits.h 文件中说明了整型类型的取值范围。
float.h 这个头文件中说明浮点型类型的取值范围
为了代码的可移植性,需要知道某种整数类型的极限值时,应该尽量使用这些常量。
• SCHAR_MIN , SCHAR_MAX :signed char 的最小值和最大值。
• SHRT_MIN , SHRT_MAX :short 的最小值和最大值。
• INT_MIN , INT_MAX :int 的最小值和最大值。
• LONG_MIN , LONG_MAX :long 的最小值和最大值。
• LLONG_MIN , LLONG_MAX :long long 的最小值和最大值。
• UCHAR_MAX :unsigned char 的最大值。
• USHRT_MAX :unsigned short 的最大值。
• UINT_MAX :unsigned int 的最大值。
• ULONG_MAX :unsigned long 的最大值。
• ULLONG_MAX :unsigned long long 的最大值。
了解清楚了类型,我们使用类型做什么呢?类型是用来创建变量的。
什么是变量呢?C语言中把经常变化的值称为变量,不变的值称为常量。
变量创建的语法形式是这样的:
//data_type name;
| |
| |
//数据类型 变量名
int age; //整型变量
char ch; //字符变量
double weight; //浮点型变量
变量在创建的时候就给⼀个初始值,就叫初始化。
int age = 18;
char ch = 'w';
double weight = 48.0;
unsigned int height = 100;
• 全局变量:在大括号外部定义的变量就是全局变量
全局变量的使用范围更广,整个工程中想使用,都是有办法使用的。
• 局部变量:在大括号内部定义的变量就是局部变量
局部变量的使用范围是比较局限,只能在自己所在的局部范围内使用的。
#include
int global = 2023;//全局变量
int main()
{
int local = 2018;//局部变量
printf("%d\n", local);
printf("%d\n", global);
return 0;
}
如果局部和全局变量,名字相同呢?
#include
int n = 1000;
int main()
{
int n = 10;
printf("%d\n" n);//打印的结果是多少呢?
return 0;
}
其实当局部变量和全局变量同名的时候,局部变量优先使用。
全局变量和局部变量在内存中存储在哪里呢?
⼀般我们在学习C/C++语言的时候,我们会关注
内存中的三个区域:栈区、堆区、静态区
1. 局部变量是放在内存的栈区
2. 全局变量是放在内存的静态区
3. 堆区是用来动态内存管理的(后期会介绍)
其实内存区域的划分会更加细致,以后在操作系统的相关知识的时候会介绍。
在写代码时候,⼀定会涉及到计算。
C语言中为了方便运算,提供了⼀系列操作符,其中有⼀组操作符叫:算术操作符。分别是: + - * / % ,这些操作符都是双目操作符。
注:操作符也被叫做:运算符,是不同的翻译,意思是⼀样的。
- 和 - 用来完成加法和减法。
- 和 - 都是有2个操作数的,位于操作符两端的就是它们的操作数,这种操作符也叫双目操作符。
#include
int main()
{
int x = 4 + 22;
int y = 61 - 23;
printf("%d\n", x);//打印x的值 26
printf("%d\n", y);//打印y的值 38
return 0;
}
运算符 * 用来完成乘法。
#include
int main()
{
int num = 5;
printf("%d\n", num * num); // 输出 25
return 0;
}
运算符 / 用来完成除法。
除号的两端如果是整数,执行的是整数除法,得到的结果也是整数。
#include
int main()
{
float x = 6 / 4;
int y = 6 / 4;
printf("%f\n", x); // 输出 1.000000
printf("%d\n", y); // 输出 1
return 0;
}
上面示例中,尽管变量 x 的类型是 float (浮点数),但是 6 / 4 得到的结果是 1.0 ,而不是1.5 。原因就在于C语言里面的整数除法是整除,只会返回整数部分,丢弃小数部分。
如果希望得到浮点数的结果,两个运算数必须至少有⼀个浮点数 ,这时C语言就会进行浮点数除法。
#include
int main()
{
float x = 6.0 / 4; // 或者写成 6 / 4.0
printf("%f\n", x); // 输出 1.500000
return 0;
}
上面示例中, 6.0 / 4 表示进行浮点数除法,得到的结果就是 1.5.
再看⼀个例⼦:
#include
int main()
{
int score = 5;
score = (score / 20) * 100;
printf("%d\n", score);
return 0;
}
上⾯的代码,你可能觉得经过运算, score 会等于 25 ,但是实际上 score 等于 0 。这是因为score / 20 是整除,会得到⼀个整数值 0 ,所以乘以 100 后得到的也是 0 。
为了得到预想的结果,可以将除数 20 改成 20.0 ,让整除变成浮点数除法。
#include
int main()
{
int score = 5;
score = (score / 20.0) * 100;//结果为25
printf("%d\n", score);
return 0;
}
运算符 % 表示求模运算,即返回两个整数相除的余值。这个运算符只能用于整数,不能用于浮点数。
#include
int main()
{
int x = 6 % 4; // 2
printf("%d\n", x);
return 0;
}
负数求模的规则是,结果的正负号由第⼀个运算数的正负号决定。
#include
int main()
{
printf("%d\n", 11 % -5); // 1
printf("%d\n",-11 % -5); // -1
printf("%d\n",-11 % 5); // -1
return 0;
}
上面示例中,第⼀个运算数的正负号( 11 或 -11 )决定了结果的正负号。
在变量创建的时候给⼀个初始值叫初始化,在变量创建好后,再给⼀个值,这叫赋值。
int a = 100;//初始化
a = 200;//赋值,这⾥使⽤的就是赋值操作符
赋值操作符 = 是⼀个随时可以给变量赋值的操作符。
赋值操作符也可以连续赋值,如:
int a = 3;
int b = 5;
int c = 0;
c = b = a+3;//连续赋值,从右向左依次赋值的。
C语言虽然支持这种连续赋值,但是写出的代码不容易理解,建议还是拆开来写,这样方便观察代码的执行细节。
int a = 3;
int b = 5;
int c = 0;
b = a+3;
c = b;
这样写,在调试的是,每⼀次赋值的细节都是可以很方便的观察的.
注:调试是什么,后期会详细讲解 。
在写代码时,我们经常可能对⼀个数进行自增、自减的操作,如下代码:
int a = 10;
a = a+3;
a = a-2;
这样代码C语言给提供了更加方便的写法:
int a = 10;
a += 3;
a -= 2;
C语言中提供了复合赋值符,方便我们编写代码,这些赋值符有:
+= -= *= /= %=
//下⾯的操作符后期讲解
>>= <<=
&= |= ^=
注:暂时只需知道有这样复合赋值符,后序会详细讲解。
前面介绍的操作符都是双目操作符,有2个操作数的。C语言中还有⼀些操作符只有⼀个操作数,被称为单目操作符。 ++、–、+(正)、-(负) 就是单目操作符的。
++是⼀种自增的操作符,又分为前置++和后置++,–是⼀种自减的操作符,也分为前置–和后置–.
int a = 10;
int b = ++a;//++的操作数是a,是放在a的前⾯的,就是前置++
printf("a=%d b=%d\n",a , b);
计算口诀:先+1,后使用;
a原来是10,先+1,后a变成了11,再使用就是赋值给b,b得到的也是11,所以计算结束后,a和b都是11,相当于这样的代码:
int a = 10;
a = a+1;
b = a;
printf("a=%d b=%d\n",a , b);
int a = 10;
int b = a++;//++的操作数是a,是放在a的后⾯的,就是后置++
printf("a=%d b=%d\n",a , b);
计算口诀:先使用,后+1
a原来是10,先使用,就是先赋值给b,b得到了10,然后再+1,然后a变成了11,所以计算结束后a是11,b是10,相当于这样的代码:
int a = 10;
int b = a;
a = a+1;
printf("a=%d b=%d\n",a , b);
如果你听懂了前置++,那前置–是同理的,只是把加1,换成了减1;
计算口诀:先-1,后使用
int a = 10;
int b = --a;//--的操作数是a,是放在a的前⾯的,就是前置--
printf("a=%d b=%d\n",a , b);//输出的结果是:9 9
同理后置–类似于后置++,只是把加⼀换成了减⼀
计算口诀:先使用,后-1
int a = 10;
int b = a--;//--的操作数是a,是放在a的后⾯的,就是后置--
printf("a=%d b=%d\n",a , b);//输出的结果是:9 10
这里的+是正号,-是负号,都是单目操作符。
运算符 + 对正负值没有影响,是⼀个完全可以省略的运算符,但是写了也不会报错。
int a = +10; 等价于 int a = 10;
运算符 - 用来改变⼀个值的正负号,负数的前面加上 - 就会得到正数,正数的前⾯加上 - 会得到负数。
int a = 10;
int b = -a;
int c = -10;
printf("b=%d c=%d\n", b, c);//这⾥的b和c都是-10
int a = -10;
int b = -a;
printf("b=%d\n", b); //这⾥的b是10
在操作符中还有⼀种特殊的操作符是强制类型转换,语法形式很简单,形式如下:
(类型)
请看代码:
int a = 3.14;
//a的是int类型, 3.14是double类型,两边的类型不⼀致,编译器会报警告
为了消除这个警告,我们可以使用强制类型转换:
int a = (int)3.14;//意思是将3.14强制类型转换为int类型,这种强制类型转换只取整数部分
俗话说,强扭的瓜不甜,我们使用强制类型转换都是万不得已的时候使用,如果不需要强制类型转化就能实现代码,这样自然更好的。
本篇博客就结束啦,谢谢大家的观看,如果公主少年们有好的建议可以留言喔,谢谢大家啦!