数学:为什么学和怎么学

一.为什么学

1.古往今来,无数科学大家赞美数学,数学是他们研究的基石,思考的脉络,甚至是灵感的来源。这里列举了几个名人说的话:

英国的哲学家罗杰⋅培根说:数学是科学的大门钥匙,忽视数学必将伤害所有的知识,因为忽视数学的人是无法了解任何其他科学乃至世界上任何其他事物的。更为严重的是,忽视数学的人不能理解他自己这一疏忽,最终将导致无法寻求任何补救的措施。

黑格尔说:数学是上帝描述自然的符号。

恩格斯说:要辩证而又唯物地了解自然,就必须掌握数学。

为什么必须掌握数学才能辩证而又唯物地了解自然呢,因为数学是上帝描述自然的符号,你只有掌握这种语言符号,才能进一步了解自然。

所以,作为“计算机之父”(同时也是数学家)的冯诺依曼说:数学处于人类智慧的中心领域。所以我们要掌握好数学,从而对其他边缘领域“降维打击”。

2.历史证明,数学实力往往影响着国家实力,世界强国,必然是数学强国。数学对于一个国家的发展至关重要,发达国家常常把保持数学领先地位作为他们的战略需求。

第一位是20世纪顶级数学家——冯.诺依曼,也是第一台电子计算机程序和存储的研制构思者。他对美国原子弹的制造做了两大贡献:一是为找到用快速计算机去模拟计算原子弹的爆炸过程和爆炸威力的“数学化”途径做出重要贡献;另外就是研究爆聚炸弹,就是把一些炸弹、原子弹捆绑起来发出更大的威力。

第二位是美籍波兰裔数学家——乌拉姆。他从欧洲逃到美国后参加了曼哈顿计划。为了模拟核实验,他发明了蒙特卡罗计算方法。最先成功的氢弹构型叫做泰勒-乌拉姆构型,就是由乌拉姆和美籍匈牙利裔物理学家爱德华.泰勒提出的。其中,泰勒是杨振宁的博士导师。

第三位是英国数学家——图灵。了解一些人工智能的同学们一定不会陌生他——图灵被誉为“人工智能之父”,以他名字命名的“图灵奖”被誉为“计算机界的诺贝尔奖”,他被评为20世纪100个最重要的人物之一。二战中,他与一些优秀数学家一起,最终破译了德军所用的密码体制,做出巨大贡献,获得英国皇室授予为国家和人民做出巨大贡献者的最高荣誉勋章——“不列颠帝国勋章”。

上面这三位数学家,仅仅是二战中大量数学家的缩影。在未来战争中,数学的作用将更为突出,以往拼刺刀式、靠个人蛮力式的场面将越来越少,更多的是利用信息化技术、先进的武器装备、信息决策系统和战术战法。

3.在武器方面有核武器、远程巡航导弹等先进武器的较量;在信息方面有保密、解密、干扰、反干扰的较量;对策方面有战略、策略、武器配制等方面的较量。每一项都和数学有紧密的关系。

举个例子:核反应过程是在高温高压下进行的,核爆炸的巨大能量在微秒量级的时间内释放出来,很难在核试验中测量出核爆炸内部的细微过程,只能得到一些综合效应的数据。但通过核反应过程的数学模型,进行数值计算却可以给出爆炸过程中各个细节的图像、定量的数据以及各种因素与机制的相互作用。在参加全面禁止核试验条约后,通过数值计算模拟核试验就更重要了。

此外,有报道说数学的威力——《一个方程将卫星图像质量提高30%》,在文章《解好战场制胜数学题》中也提到善“算”是古今中外兵家普遍认同的重要制胜法则、确立精算理念是掌握现代战场制胜权的重要前提、“秒算”主导战场态势是未来战争的必然趋势。这些足以说明,未来无论是在国计民生还是在国防方面,数学的地位越来越重要,大家是祖国的未来,还是要学好数学的。

除了上面提到的未来工作生活中处处会用到数学工具之外,学习数学,在学习过程中不断形成数理思维、结构化思维,对于我们思维发展同样具有极大的促进作用。

以后对数学专业深入的了解,大家会发现数学专业中的许多问题跟我们本科阶段面对的数学问题是极为相似的,原因就是相似性原理,相似性在宇宙万事万物中是普遍存在的,工作中会遇到大量的复杂性问题、确定性/不确定性问题、模糊性问题、灰色问题等等,这种复杂性、确定性/不确定性、模糊性问题在数学中也是大量存在的。

在处置和解决这些问题时,尤其是在大数据环境下,简单的拍脑袋、凭经验决策不仅难以解决问题,甚至可能会发生致命的错误。

4.我们在学习数学知识,求解数学问题时,如果问题很难,你可能会出现沮丧、退缩等情绪,用理性约束自己,进行思维上的训练,包括:抽象化、研究问题的影响要素、假设推理、逻辑分析、运用符号,进而建立数学模型、计算模型、分析结果、具体实施,解决数学问题,如果结果不理想,回过头来再调整模型,进行优化,通过反复的这种训练,不断形成一种数理思维、结构化思维,不断树立精算、深算意识和积极进取、攻坚克难的行为模式。

演绎推理、逻辑证明使人在工作中的思路更为清晰,推理更严密;深算、精算、细算是实施精确工作的重要手段,充分运用数理思维,从繁杂的信息中抓住关键环节形成精确严谨的工作实施计划。

若这种思维能力欠缺,就可能理不出头绪,造成决策迟缓,甚至概略决策、模糊决策,使下级难以执行和操作。空间感知能力、逻辑推理能力、逆向思维与发散思维、信息决策能力等是未来专业人才不可或缺的能力素养!

而在数学学习中,体会问题的复杂性、模糊性、确定性与不确定性,思考数学知识脉络上的逻辑性、继承性、相似性,感悟数学概念、原理的本质内涵、哲学属性以及美学价值,逐步培养数理思维,是有效进行知识迁移,应对各种复杂性、不确定性、突发性,树立深算精算意识和大局观,形成专业思维的重要途径。

二.怎么学

人类的学习具有明显的个体差异性,但是同样也存在突出的规律性!

这里把我们总结的高等数学学习方法跟大家交流一下,可以总结为:

一个方法论、两个基本要素和若干实施策略。

三者的重要程度依次下降,其中方法论、基本要素决定了你学习高数达到境界,起到方向指引作用,若干具体的实施策略可以根据自己的实际情况选择性调整。

首先一个方法论是:内外兼修,阴阳相辅。它符合中国传统哲学的观点,好比修炼绝世武功,内功、外功修炼缺一不可。我们学习高等数学,也要修炼好内、外功。

两个基本要素,第一个要素是:态度;第二个要素是:在勤奋的基础上独立思考。

注意,学习是个循序渐进的过程。道理虽然都懂,但是在实际中往往忽视了这一点,或者是不去规划自己的学习过程。不要以为仅仅上课听懂了老师讲的内容,就真的学好了,这样没几次课,所学的东西就会出现遗忘、混淆甚至是混乱,久而久之就掉队了,打击自己的学习信心。

所以,听完课之后,一方面要通过老师布置的作业题来检测自己,甚至是进一步通过作业题来深化、夯实学习效果,一道题不会,通过研究、讨论,甚至是寻找答案搞懂,这就是真正的学习。

另一方面,做了一些题,要结合自己的理解去进一步深挖这堂课中数学概念、定理的内涵,想一想实际生活中有哪些事物、道理跟其相似,不断地进行深度思考。

很久以后,当你接触过很多不同层次的人之后,或许你才会发现,真正的牛人、很厉害的人,无一不是擅长深度思考的人。

1.关于要不要做笔记的问题:

第一,做笔记不容易犯困,自己上课有个追求,最低层面就是把这堂课关键点记录下来,自己是带着任务来的;第二,老师讲的内容一定是考试的内容,明白吗?笔记记什么?不要全部都记,记你认为重要的、对你启发大的,或是老师强调多的,课堂上不能马上完成的。

另外还要注意,笔记的速度一定要快,跟上节奏。一节、两节课跟上没什么难度,难就难在坚持,要敢于攻坚克难,磨炼毅力。

2.坚持小组协作学习。

3.“问烦”授课教师。

这一点的意思是,一定要脸皮厚一点,针对自己不明白的问题,不厌其烦的问老师。

这里有两点需要注意:

一是一定要充分做足了功课再问,书都没看,没有经过自己的深度思考,就问老师,效果通常不好。可以结合着老师讲的题,哪里不懂问哪里,可以先记下来,课间再问,也可以课后找时间去老师办公室追着问,甚至可以上课打断老师直接问。老师最怕的、也最反感的就是气氛沉闷,有问题不问、或是没有思考也没有问题,这就好比没有反馈,老师很难知道你们学懂了几分。

第二,就是老师在独自给你讲的时候,不要碍于面子,不懂装懂,明明没有明白,却在不断地点头,或者是想当然,这也不可取。学习中谁都会遇到问题,正如人生中也会不断地遇到不可回避的问题,是避重就轻?还是掩耳盗铃?是沮丧颓废?还是破罐破摔?只有迎难而上,努力的寻找各种解决问题的办法,争取做一个内心强大的人。

你可能感兴趣的:(数学:为什么学和怎么学)