clickhouse 简介 ck是一个列式存储的数据库,其针对的场景是OLAP。OLAP的特点是:
为了增强压缩比例,ck存储的一列长度固,于是存储的时候,不用在存储该列的长度信息
使用向量引擎 , vector engine ,什么是向量引擎? https://www.infoq.cn/article/columnar-databases-and-vectorization/?itm_source=infoq_en&itm_medium=link_on_en_item&itm_campaign=item_in_other_langs
为了提高插入性能,最好批量插入,最少批次是1000行记录。且使用并发插入能显著提高插入速度。
ck像es一样暴露两个端口,一个tcp的,一个http的。tcp默认端口:9000 ,http默认端口:8123。一般我们并不直接通过这些端口与ck交互,而是使用一些客户端,这些客户端可以是:
ck能够读写多种格式做为输入(即insert),也能在输出时(即select )吐出指定的格式。
比如插入数据时,指定数据源的格式为JSONEachRow
INSERT INTO UserActivity FORMAT JSONEachRow {"PageViews":5, "UserID":"4324182021466249494", "Duration":146,"Sign":-1} {"UserID":"4324182021466249494","PageViews":6,"Duration":185,"Sign":1}
读取数据时,指定格式为JSONEachRow
SELECT * FROM UserActivity FORMAT JSONEachRow
值得注意的时指定这些格式应该是ck解析或生成的格式,并不是ck最终的的存储格式,ck应该还是按自己的列式格式进行存储。ck支持多种格式,具体看文档 https://clickhouse.yandex/docs/en/interfaces/formats/#native
ck支持在其中ck中创建一个数据库,但数据库的实际存储是Mysql,这样就可以通过ck对该库中表的数据进行crud, 有点像hive中的外表,只是这里外挂的是整个数据库。
假设mysql中有以下数据
mysql> USE test;
Database changed
mysql> CREATE TABLE `mysql_table` (
-> `int_id` INT NOT NULL AUTO_INCREMENT,
-> `float` FLOAT NOT NULL,
-> PRIMARY KEY (`int_id`));
Query OK, 0 rows affected (0,09 sec)
mysql> insert into mysql_table (`int_id`, `float`) VALUES (1,2);
Query OK, 1 row affected (0,00 sec)
mysql> select * from mysql_table;
+--------+-------+
| int_id | value |
+--------+-------+
| 1 | 2 |
+--------+-------+
1 row in set (0,00 sec)
在ck中创建数据库,链接上述mysql
CREATE DATABASE mysql_db ENGINE = MySQL('localhost:3306', 'test', 'my_user', 'user_password')
表引擎定义一个表创建是时候,使用什么引擎进行存储。表引擎控制如下事项
建表时,指定table engine相关配置
CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1] [TTL expr1],
name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2] [TTL expr2],
...
INDEX index_name1 expr1 TYPE type1(...) GRANULARITY value1,
INDEX index_name2 expr2 TYPE type2(...) GRANULARITY value2
) ENGINE = MergeTree()
[PARTITION BY expr]
[ORDER BY expr]
[PRIMARY KEY expr]
[SAMPLE BY expr]
[TTL expr]
[SETTINGS name=value, ...]
部分配置举例
ENGINE MergeTree() PARTITION BY toYYYYMM(EventDate) ORDER BY (CounterID, EventDate, intHash32(UserID)) SAMPLE BY intHash32(UserID) SETTINGS index_granularity=8192
gruanule是按主键排序后,紧邻在一起,不可再分割的数据集。每个granule 的第一行数据的主键作为这个数据作为这个数据集的mark 。比如这里的主键是(CounterID, Date)
。第一个granule排序的第一列数据,其主键为a,1
,可以看到多一个gruanle中的多行数据,其主键可以相同。
同时为了方便索引,ck会对每个granule指定一个mark number, 方便实际使用的(通过编号,总比通过实际的主键值要好使用一点)。
这种索引结构非常像跳表。也称为稀疏索引,因为它不是对每一行数据做索引,而是以排序后的数据范围做索引。
查询举例,如果我们想查询CounterID in ('a', 'h'),ck服务器基于上述结构,实际读取的数据范围为[0, 3) and [6, 8)
可以在建表时,通过index_granularity指定,两个mark之间存储的行记录数,也即granule的大小(因为两个mark间就是一个granule)
可以对表和字段进行过期设置
MergeTree 相当于MergeTree家族表引擎的超类。它定义整个MergeTree家族的数据文件存储的特征。即
而在此数据基础上,衍生出了一些列增对不同应用场景的子MergeTree。他们分别是
ck中创建的表,默认都是没有replicate的,为了提高可用性,需要引入replicate。ck的引入方式是通过集成zookeeper实现数据的replicate副本。
正对上述的各种预聚合引擎,也有对应的ReplicatedMergeTree 引擎进行支持
##表引擎(table engine)— Log Engine 家族 该系列表引擎正对的是那种会持续产生需要小表,并且各个表数据量都不大的日志场景。这些引擎的特点是: