- AI让奥运报道一键跨越,见证新华社新科技
云计算视频云音视频
媒体智能与巴黎奥运的一场邂逅。随着巴黎奥运会开幕式为全世界掀起一场文艺浪潮,塞纳河畔也从浪漫艺术的盛宴,转向体育竞技的击攘。让全世界不可错过巴黎前方的每刻高光,更需要一场多媒体技术的迎赶革新。于是,我们看到另一场媒体技术舞台,浮出塞纳河的水面。新华社作为国际奥委会认可的唯一非西方的国际通讯社,此次启用由阿里云和山东广电信通联合打造的重大报道共享系统,以AI领先应用,助力巴黎奥运报道。图示:新华社在
- 【MYSQL学习】5分钟学会MySQL登录,新手也能轻松搞定?
墨瑾轩
MySql入门~精通mysql学习adb
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣5分钟学会MySQL登录,新手也能轻松搞定?引言嘿,小伙伴们!今天我们来聊聊MySQL的登录问题。对于初学者来说,登录数据库可能是你接触MySQL的第一步,也是最重要的一步。那么,MySQL是如何登录的呢?有哪些常见的问题需要注意?别急,今天我就带你一步步了解
- 知识库在意图识别中扮演着**数据支撑**和**语义理解辅助**的双重角色
PersistDZ
大数据与AI人工智能
知识库在意图识别中扮演着数据支撑和语义理解辅助的双重角色,而训练智能客服的意图识别Agent需要结合知识库的结构化数据与机器学习技术。以下是详细解析:一、知识库在意图识别中的作用1.提供标注数据意图标签定义:知识库中存储了预先定义的意图分类体系(如“订单查询”“退换货”“投诉”等),为模型提供明确的训练目标。标注样本:知识库包含大量用户对话历史及其对应的意图标签,是训练监督学习模型的核心数据源。2
- 记:应聘北京思特奇信息技术股份有限公司 C++工程师
指针的值是地址
大四求职c++敏捷开发
一轮,软件上的笔试题这里记录几个问题。1.构成C语言的基本单位是函数。2.敏捷开发:相对于“非敏捷”,更强调程序员团队与业务专家之间的紧密协作、面对面的沟通(认为比书面的文档更有效)、频繁交付新的软件版本、紧凑而自我组织型的团队、能够很好地适应需求变化的代码编写和团队组织方法,也更注重软件开发过程中人的作用。(来自百度百科)一个通俗的博客另一个。我个人的理解就是以人为中心,尽量以口头交流为主,以尽
- 一切皆是映射:DQN训练加速技术:分布式训练与GPU并行
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1深度强化学习的兴起近年来,深度强化学习(DeepReinforcementLearning,DRL)在游戏、机器人控制、自然语言处理等领域取得了令人瞩目的成就。作为一种结合深度学习和强化学习的强大技术,DRL能够使智能体在与环境交互的过程中学习最优策略,从而实现自主决策和控制。1.2DQN算法及其局限性深度Q网络(DeepQ-Network,DQN)是DRL的一种经典算法,它利用
- 大规模语言模型从理论到实践 分布式训练的集群架构
AI智能涌现深度研究
DeepSeekR1&大数据AI人工智能Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大规模语言模型从理论到实践分布式训练的集群架构作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习技术的飞速发展,大规模语言模型(LargeLanguageModels,LLMs)在自然语言处理(NaturalLanguageProcessing,NLP)领域取得了突破性进展。LLMs,如BERT、GPT-3等,通
- 数仓建模—Data Warebase AI 时代数据平台应当的样子
不二人生
数仓建模人工智能数据仓库数仓建模
DataWarebaseAI时代数据平台应当的样子引言:在这个AI技术飞速发展的时代,我们有能力更深入地发掘数据潜在的价值,而数据处理不应当成为阻碍。云原生分布式DataWarebase将开启处理数据的新范式,它让数据的使用返璞归真,不论是存储还是查询,一个系统满足业务全方位数据需求。打破复杂数据架构的束缚,大大降低数据的使用门槛,释放数据潜能,让数据涌现智能。背景近二十年大数据发展史2002年我
- Flink 通过 Chunjun Oracle LogMiner 实时读取 Oracle 变更日志并写入 Doris 的方案
roman_日积跬步-终至千里
#flink实战flinkoracle大数据
文章目录一、技术背景二、关键技术1、OracleLogMiner2、Chunjun的LogMiner关键流程3、修复ChunjunOracleLogMiner问题一、技术背景在大数据实时同步场景中,需要将Oracle数据库的变更数据(CDC)采集并写入ApacheDoris,以支持数据分析、BI报表、实时数据仓库等应用。本方案基于Flink+Chunjun,通过OracleLogMiner解析Re
- 【第11章】亿级电商平台订单系统-海量数据架构设计
cherry5230
架构系统架构架构分布式
1-1本章导学课程导学课程定位:大型系统架构设计核心难点解析核心项目:BToB电商平台订单系统(年交易额200亿级)本章知识体系1.核心概念辨析海量数据vs大数据本质区别解析常见认知误区说明2.方法论框架海量数据处理核心思想分布式计算原理数据分片策略弹性扩展机制3.数据库架构设计方法论体系读写分离模式分库分表策略数据分区方案缓存层设计4.数据处理体系海量数据处理之道批处理与流处理数据压缩技术异步处
- 图生视频技术的发展与展望:从技术突破到未来图景
Liudef06
StableDiffusion音视频人工智能深度学习stablediffusion
一、技术发展现状图生视频(Image-to-VideoGeneration)是生成式人工智能(AIGC)的重要分支,其核心是通过单张或多张静态图像生成动态视频序列。近年来,随着深度学习、多模态融合和计算硬件的进步,图生视频技术经历了从基础研究到商业落地的快速演进。早期探索与GAN的奠基早期图生视频技术主要基于生成对抗网络(GAN),通过对抗训练生成低分辨率的视频片段。例如,DeepMind的DVD
- NET Core 大数据处理
Gene Z
.NetC#c#
在.NETCore里处理10万条以上的大数据时,可采用以下几种方式,同时也适用于不同的应用场景。1.批量处理方式借助批量操作一次性处理大量数据,从而减少与数据库或外部系统的交互次数,提高性能。例如,在向数据库插入大量数据时,可使用批量插入操作。应用场景适用于数据导入、数据迁移等场景。比如将CSV文件中的大量数据批量导入到数据库中。2.并行处理方式运用并行编程技术(像Parallel.ForEach
- 火山云与腾讯云的优势对比
苹果企业签名分发
腾讯云云计算
首先,我需要确定用户的需求是什么。可能他们是在选择云服务提供商,或者在做市场调研。用户可能是企业的IT决策者,或者是开发人员,需要了解哪个平台更适合他们的项目。接下来,我得收集火山云和腾讯云的基本信息。火山云是字节跳动旗下的,虽然进入市场较晚,但可能有字节的技术支持,比如大数据和AI方面的优势。腾讯云作为老牌厂商,生态完善,产品线全,尤其在游戏、社交等领域有优势。需要对比的方面包括:背景与市场地位
- Flume与Couchbase集成原理与实例
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Flume与Couchbase集成原理与实例作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着大数据时代的到来,企业对数据存储和处理的效率要求越来越高。在数据采集、存储、处理和分析的各个环节,都需要高效、可靠的技术支持。Flume和Couchbase正是这样两种优秀的工具,前者擅长于数据采集和传输,后者擅长于键值存储和文
- 【论文阅读】MMedPO: 用临床感知多模态偏好优化调整医学视觉语言模型
勤奋的小笼包
论文阅读语言模型人工智能自然语言处理chatgpt
MMedPO:用临床感知多模态偏好优化调整医学视觉语言模型1.背景2.核心问题:3.方法:3.实验结果与优势4.技术贡献与意义5.结论MMedPO:AligningMedicalVision-LanguageModelswithClinical-AwareMultimodalPreferenceOptimizationMMedPO:用临床感知多模态偏好优化调整医学视觉语言模型gitgub:地址1.
- 腾讯云与MongoDB战略合作升级,瞄准AI时代的数据管理服务
CSDN资讯
腾讯云mongodb人工智能
2025年3月20日,腾讯云与MongoDB联合宣布续签战略合作协议,双方将围绕AI时代的技术变革为全球用户提供卓越的数据管理服务。文档数据库MongoDB以其灵活的数据结构、强大的性能和原生的分布式扩展性等特点,成为最受欢迎的NoSQL数据库之一,广泛应用于游戏、社交媒体、电商、金融和物联网等各行各业。在DB-Engines全球数据库排行榜上,MongoDB长期位居NoSQL数据库第一。据了解,
- Hugging Face 模型格式全解析:从 PyTorch 到 GGUF
mingo_敏
DeepLearningpytorch人工智能python
HuggingFace模型格式全解析:从PyTorch到GGUFHuggingFace生态支持多种模型格式,以满足不同场景下的存储、部署和推理需求。以下是主流格式的技术解析与演进脉络:1.PyTorch原生格式(.pt/.pth)特性:直接保存PyTorch的state_dict(模型参数)或完整模型(含结构)。兼容性强,与PyTorch训练/推理流程深度集成。文件体积较大,加载速度较慢,存在安全
- SGM61230 同步降压转换器技术文档
慎独yfs
电子元器件单片机嵌入式硬件
第一章概述SGM61230是一款宽输入电压范围(4.5V至28V)的同步降压转换器,可提供高达3A的输出电流。该器件集成功率开关和峰值电流模式控制补偿电路,采用6引脚TSOT-23封装,内置5ms软启动功能以抑制浪涌电流。关键特性:-**智能保护机制**:逐周期峰值电流限制、输出过压保护(OVP)、带自动恢复的热关断-**高效模式切换**:轻载时进入脉冲跳过模式(PSM),重载时自动切换至PWM模
- 【机器视觉】少量样本图片情况下的图片识别技术方案
yuanpan
机器学习人工智能计算机视觉
在只有少量图片样本的情况下,进行图像识别是一个具有挑战性的任务。以下是一些应对小样本问题的有效方案:1.数据增强(DataAugmentation)通过对现有样本进行各种变换来生成更多的训练数据,例如:几何变换:旋转、缩放、平移、翻转等。颜色变换:调整亮度、对比度、饱和度等。噪声添加:高斯噪声、椒盐噪声等。裁剪和填充:随机裁剪图像的一部分或填充边缘。工具:Keras:ImageDataGenera
- MySQL- 索引下推
青衫客36
数据库mysql数据库
索引下推(IndexConditionPushdown,简称ICP)是MySQL5.6引入的一项优化技术,它通过将部分查询条件“下推”到索引扫描阶段,从而减少不必要的行访问和回表操作,提高查询性能。1.索引下推的概念在传统的索引扫描过程中,MySQL会首先通过索引找到符合索引条件的记录,然后回表(即访问实际的表数据行)读取所需的列,最后再应用其他过滤条件(非索引条件)来判断这条记录是否符合查询要求
- 指令系统和计算机体系结构——一文解析冯·诺依曼架构
点滴汇聚江河
软考-软件设计师架构
文章目录一、核心思想二、核心组成部分1.中央处理器(CPU)2.内存(Memory)3.输入/输出(I/O)设备4.总线(Bus)三、工作流程四、冯·诺依曼架构的局限性五、现代计算机的改进1.流水线技术(Pipeline)关键机制2.高速缓存(Cache)关键机制3.多核CPU(Multi-Core)关键挑战与解决方案4.乱序执行(Out-of-OrderExecution)关键技术5.其他关键改
- 大模型时代的知识焦虑
机载软件与适航
机器学习-建模算法-代理模型人工智能大数据
引言:浪潮之巅,焦虑暗涌大模型时代已经浩荡而来,如同奔腾的浪潮,以令人惊叹的速度重塑着世界的面貌。从智能客服的温声细语,到AI绘画的妙笔生花,再到自动驾驶的日趋成熟,大型语言模型、图像模型等人工智能技术以前所未有的姿态,渗透进我们生活的方方面面。信息获取前所未有的便捷,知识创造空前高效,人机交互焕然一新,一个充满无限可能的智能化未来似乎触手可及。然而,在这令人眼花缭乱的技术盛景之下,一股无形的焦虑
- GGUF量化模型技术解析与DeepSeek-R1-Distill-Llama-8B选型指南
每天三杯咖啡
人工智能
```markdown#【完全指南】GGUF量化技术与DeepSeek-R1模型选型:从入门到部署##什么是模型量化?(小白扫盲版)###1.1量化就像"模型减肥术"-**传统模型**:每个参数用32位浮点数(好比高清无损图片)-**量化模型**:用4-8位整数存储(类似手机压缩照片)-**核心原理**:`FP32→Int8/Int4`的数学映射,保留关键特征###1.2为什么要量化?|对比项|原
- 含光热电站、有机有机朗肯循环、P2G的综合能源优化调度(Matlab代码实现)
创新优化代码学习
能源matlab前端
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述含光热电站、有机朗肯循环与P2G的综合能源优化调度研究一、技术基础与系统作用二、多技术协同机制三、优化调度模型构建四、典型案例与仿真分析五、未来研究方向结论2运行结果3参考文献4Matlab代码实现1概述光热发电(concentratingsolarp
- “轻松一键生成 AI 图像:Stable Diffusion Online 带来革命性视觉创意体验!“
ai小精灵
人工智能stablediffusion文心一言AI作画chatgpt
StableDiffusionOnline正在为AI图像生成领域树立新标准,将复杂的功能与便捷直观的用户体验相结合。历史上,StableDiffusion的部署步骤带来了重大挑战,特别是对于技术新手而言。然而,StableDiffusionOnline消除了这些障碍,提供了一个既适合新手也适合资深专业人士的酷炫界面。什么是StableDiffusionOnline?StableDiffusionO
- kvm虚拟化的概念与作用
千航@abc
kvm虚拟化kvm虚拟化
概念——虚拟化是指通过虚拟化技术将一台计算机虚拟为多台逻辑计算机。在一台计算机上同时运行多个逻辑计算机,每个逻辑计算机可运行不同的操作系统,并且应用程序都可以在相互独立的空间内运行而互不影响,从而显著提高计算机的工作效率。作用——虚拟化技术可以扩大硬件的容量,简化软件的重新配置过程。CPU的虚拟化技术可以单CPU模拟多CPU并行,允许一个平台同时运行多个操作系统,并且应用程序都可以在相互独立的空间
- PCDN如何优化移动设备的网络体验
yczykjyxgs
pcdn服务器
在移动互联网时代,用户对网络体验的要求不断提升,PCDN(P2PCDN)技术为优化移动设备网络体验提供了创新解决方案。这项技术通过重构传统内容分发模式,有效解决了移动网络环境下的带宽瓶颈和传输延迟问题。PCDN技术的核心在于构建了一个去中心化的内容分发网络。移动设备不再仅仅作为内容消费者,而是同时承担了内容分发节点的角色。这种设计充分利用了移动设备的闲置带宽和存储资源,形成了一个动态的内容共享网络
- ## PCDN中的网络拥塞控制技术探讨
yczykjyxgs
pcdn网络智能路由器
随着互联网视频流量的爆发式增长,传统CDN面临着成本高、扩展性差等挑战。P2PCDN(PCDN)作为一种新兴的内容分发网络架构,通过利用边缘节点的闲置带宽和存储资源,有效降低了内容分发成本,并提升了网络扩展性。然而,PCDN中节点动态性强、网络环境复杂,传统的网络拥塞控制技术难以直接适用,因此需要针对PCDN的特点设计新的拥塞控制机制。PCDN网络拥塞控制面临的挑战1.节点异构性:PCDN节点性能
- PCDN 与传统 CDN 的对比:优势和劣势分析
yczykjyxgs
pcdn智能路由器
在内容分发领域,PCDN和传统CDN是两种重要的技术手段。传统CDN凭借其成熟的架构,在互联网发展历程中发挥着关键作用。它通过在各地广泛部署缓存服务器,将内容缓存至离用户更近的节点,以此加快分发速度。这种模式下,内容传输路径短,能有效减少延迟,为用户提供稳定的访问体验。不过,传统CDN的大规模服务器部署带来了高昂成本,无论是建设费用还是维护成本都不容小觑。PCDN作为融合了P2P技术的新兴内容分发
- 近期计算机领域的热点技术
0dayNu1L
云计算量子计算人工智能
随着科技的飞速发展,计算机领域的新技术、新趋势层出不穷。本文将探讨近期计算机领域的几个热点技术趋势,并对它们进行简要的分析和展望。一、人工智能与机器学习人工智能(AI)和机器学习(ML)是近年来计算机领域最为热门的话题之一。AI和ML技术已经广泛应用于图像识别、自然语言处理、智能推荐等领域,并取得了显著的成果。随着技术的不断进步,AI和ML将更深入地渗透到各个行业,为人类社会带来更多便利和效益。在
- 区块链赋能:用Python开发去中心化投票系统
Echo_Wish
Python!实战!区块链python去中心化
区块链赋能:用Python开发去中心化投票系统在这个互联网迅猛发展的时代,投票系统不仅仅停留在政务领域,它已成为社区治理、企业决策甚至区块链DAO(去中心化自治组织)中重要的机制。然而,传统投票系统往往集中化,存在信任和数据安全问题。区块链技术以其不可篡改性和透明性为去中心化投票提供了理想的解决方案。在这篇文章中,我将通过Python语言,结合区块链智能合约,教你如何从零开发一个去中心化的投票系统
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,