有任何问题欢迎在下面留言
本篇文章的代码运行界面均在Pycharm中进行
本篇文章配套的代码资源已经上传
deeplab系列算法概述
deeplabV3+ VOC分割实战1
deeplabV3+ VOC分割实战2
deeplabV3+ VOC分割实战3
deeplabV3+ VOC分割实战4
deeplabV3+ VOC分割实战5
Visual object classes challenge 2012,一般简称VoC2012,一个非常经典的数据集,很多论文都使用它,分类检测分割任务都有用这个数据集
如图所示,在我们已经上传的项目中,我已经下载了这个数据集,voc2012中包含,6个文件夹,其中JPEGImages是包含了很多张的图像,一共有17125张图像,这是我们所有的数据。而Annotations文件夹就是包含了这17125张图像对应的标签数据,全部都是xml文件:
每个标注文件中,包含了对应的图像名、图像的(h,w,c)、语义分割的标注信息、物体检测标注信息等,在ImageSets中的main文件夹有识别任务的标注信息、Segmentation文件夹有分割任务的标注信息、Action文件夹有任务动作识别的标注信息我们的任务主要是图像分割,使用的是VOC2012文件夹中的SegmentationClassAug文件夹的数据:
def get_argparser():
parser = argparse.ArgumentParser()
# Datset Options
parser.add_argument("--data_root", type=str, default='./datasets/data',
help="path to Dataset")
parser.add_argument("--dataset", type=str, default='voc',
choices=['voc', 'cityscapes'], help='Name of dataset')
parser.add_argument("--num_classes", type=int, default=None,
help="num classes (default: None)")
# Deeplab Options
parser.add_argument("--model", type=str, default='deeplabv3plus_mobilenet',
choices=['deeplabv3_resnet50', 'deeplabv3plus_resnet50',
'deeplabv3_resnet101', 'deeplabv3plus_resnet101',
'deeplabv3_mobilenet', 'deeplabv3plus_mobilenet'], help='model name')
parser.add_argument("--separable_conv", action='store_true', default=False,
help="apply separable conv to decoder and aspp")
parser.add_argument("--output_stride", type=int, default=16, choices=[8, 16])
# Train Options
parser.add_argument("--test_only", action='store_true', default=False)
parser.add_argument("--save_val_results", action='store_true', default=False,
help="save segmentation results to \"./results\"")
parser.add_argument("--total_itrs", type=int, default=30e3,
help="epoch number (default: 30k)")
parser.add_argument("--lr", type=float, default=0.01,
help="learning rate (default: 0.01)")
parser.add_argument("--lr_policy", type=str, default='poly', choices=['poly', 'step'],
help="learning rate scheduler policy")
parser.add_argument("--step_size", type=int, default=10000)
parser.add_argument("--crop_val", action='store_true', default=False,
help='crop validation (default: False)')
parser.add_argument("--batch_size", type=int, default=16,
help='batch size (default: 16)')
parser.add_argument("--val_batch_size", type=int, default=4,
help='batch size for validation (default: 4)')
parser.add_argument("--crop_size", type=int, default=513)
parser.add_argument("--ckpt", default=None, type=str,
help="restore from checkpoint")
parser.add_argument("--continue_training", action='store_true', default=False)
parser.add_argument("--loss_type", type=str, default='cross_entropy',
choices=['cross_entropy', 'focal_loss'], help="loss type (default: False)")
parser.add_argument("--gpu_id", type=str, default='0',
help="GPU ID")
parser.add_argument("--weight_decay", type=float, default=1e-4,
help='weight decay (default: 1e-4)')
parser.add_argument("--random_seed", type=int, default=1,
help="random seed (default: 1)")
parser.add_argument("--print_interval", type=int, default=10,
help="print interval of loss (default: 10)")
parser.add_argument("--val_interval", type=int, default=100,
help="epoch interval for eval (default: 100)")
parser.add_argument("--download", action='store_true', default=False,
help="download datasets")
训练参数:
# PASCAL VOC Options
parser.add_argument("--year", type=str, default='2012',
choices=['2012_aug', '2012', '2011', '2009', '2008', '2007'], help='year of VOC')
# Visdom options
parser.add_argument("--enable_vis", action='store_true', default=False,
help="use visdom for visualization")
parser.add_argument("--vis_port", type=str, default='13570',
help='port for visdom')
parser.add_argument("--vis_env", type=str, default='main',
help='env for visdom')
parser.add_argument("--vis_num_samples", type=int, default=8,
help='number of samples for visualization (default: 8)')
return parser
可视化展示:
deeplab系列算法概述
deeplabV3+ VOC分割实战1
deeplabV3+ VOC分割实战2
deeplabV3+ VOC分割实战3
deeplabV3+ VOC分割实战4
deeplabV3+ VOC分割实战5