学习 使用 GitHub - derronqi/yolov8-face: yolov8 face detection with landmark的推理代码
import cv2
import numpy as np
import math
import argparse
import time
class YOLOv8_face:
def __init__(self, path, conf_thres=0.25, iou_thres=0.45):
self.conf_threshold = conf_thres
self.iou_threshold = iou_thres
self.class_names = ['face']
self.num_classes = len(self.class_names)
# Initialize model
# self.net = cv2.dnn.readNet(path)
self.net = cv2.dnn.readNetFromONNX(path)
self.input_height = 640
self.input_width = 640
self.strides = (8, 16, 32)
self.feats_hw = [(math.ceil(self.input_height / self.strides[i]), math.ceil(self.input_width / self.strides[i]))
for i in range(len(self.strides))]
def make_anchors(self, feats_hw, grid_cell_offset=0.5):
"""Generate anchors from features."""
anchor_points = {}
for i, stride in enumerate(self.strides):
h, w = feats_hw[i]
x = np.arange(0, w) + grid_cell_offset # shift x
y = np.arange(0, h) + grid_cell_offset # shift y
sx, sy = np.meshgrid(x, y)
# sy, sx = np.meshgrid(y, x)
anchor_points[stride] = np.stack((sx, sy), axis=-1).reshape(-1, 2)
return anchor_points
def softmax(self, x, axis=1):
x_exp = np.exp(x)
# 如果是列向量,则axis=0
x_sum = np.sum(x_exp, axis=axis, keepdims=True)
s = x_exp / x_sum
return s
def resize_image(self, srcimg, keep_ratio=True):
top, left, newh, neww = 0, 0, self.input_width, self.input_height
if keep_ratio and srcimg.shape[0] != srcimg.shape[1]:
hw_scale = srcimg.shape[0] / srcimg.shape[1]
if hw_scale > 1:
newh, neww = self.input_height, int(self.input_width / hw_scale)
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
left = int((self.input_width - neww) * 0.5)
img = cv2.copyMakeBorder(img, 0, 0, left, self.input_width - neww - left, cv2.BORDER_CONSTANT,
value=(0, 0, 0)) # add border
else:
newh, neww = int(self.input_height * hw_scale), self.input_width
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
top = int((self.input_height - newh) * 0.5)
img = cv2.copyMakeBorder(img, top, self.input_height - newh - top, 0, 0, cv2.BORDER_CONSTANT,
value=(0, 0, 0))
else:
img = cv2.resize(srcimg, (self.input_width, self.input_height), interpolation=cv2.INTER_AREA)
return img, newh, neww, top, left
def detect(self, srcimg):
[height, width, _] = srcimg.shape
length = max((height, width))
image = np.zeros((length, length, 3), np.uint8)
image[0:height, 0:width] = srcimg
scale = length / 640
blob = cv2.dnn.blobFromImage(image, scalefactor=1 / 255, size=(640, 640), swapRB=True)
self.net.setInput(blob)
preds = self.net.forward()
# if isinstance(preds, tuple):
# preds = list(preds)
# if float(cv2.__version__[:3])>=4.7:
# preds = [preds[2], preds[0], preds[1]] ###opencv4.7需要这一步,opencv4.5不需要
# Perform inference on the image
det_bboxes, det_conf, landmarks = self.post_process(preds, scale)
return det_bboxes, det_conf, landmarks
def post_process_1(self, preds, scale):
preds = preds.transpose((0, 2, 1)).squeeze()
t_index = np.where(preds[:, 4] > 0.25)
preds = preds[t_index, :].squeeze()
x1 = np.expand_dims(preds[:, 0] - (0.5 * preds[:, 2]), -1)
y1 = np.expand_dims(preds[:, 1] - (0.5 * preds[:, 3]), -1)
w = np.expand_dims(preds[:, 2], -1)
h = np.expand_dims(preds[:, 3], -1)
bboxes = np.concatenate([x1, y1, w, h], axis=-1) * scale
scores = preds[:, 4]
landmarks = preds[:, -15:] * scale
indices = cv2.dnn.NMSBoxes(bboxes, scores, 0.25, 0.45, 0.5)
if len(indices) > 0:
bboxes = bboxes[indices]
scores = scores[indices]
# classIds = classIds[indices]
landmarks = landmarks[indices]
return bboxes, scores, landmarks
else:
print('nothing detect')
def post_process(self, preds, scale):
bboxes, scores, landmarks = [], [], []
preds = preds.transpose((0, 2, 1))
rows = preds.shape[1]
for i in range(rows):
score = preds[0][i][4]
kpt = preds[0][i][-15:]
if score >= 0.25:
# xywh
box = [
preds[0][i][0] - (0.5 * preds[0][i][2]), preds[0][i][1] - (0.5 * preds[0][i][3]),
preds[0][i][2], preds[0][i][3]]
bboxes.append(box)
scores.append(score)
landmarks.append(kpt)
bboxes = np.array(bboxes) * scale
scores = np.array(scores)
landmarks = np.array(landmarks) * scale
indices = cv2.dnn.NMSBoxes(bboxes, scores, 0.25, 0.45, 0.5)
if len(indices) > 0:
bboxes = bboxes[indices]
scores = scores[indices]
# classIds = classIds[indices]
landmarks = landmarks[indices]
return bboxes, scores, landmarks
else:
print('nothing detect')
def draw_detections(self, image, boxes, scores, kpts):
for box, score, kp in zip(boxes, scores, kpts):
x, y, w, h = box.astype(int)
# Draw rectangle
cv2.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), thickness=2)
cv2.putText(image, "face:" + str(round(score, 2)), (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255),
thickness=2)
for i in range(5):
cv2.circle(image, (int(kp[i * 3]), int(kp[i * 3 + 1])), 1, (0, 255, 0), thickness=-1)
# cv2.putText(image, str(i), (int(kp[i * 3]), int(kp[i * 3 + 1]) - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), thickness=1)
return image
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--imgpath', type=str, default='images/jihui.png', help="image path") # big_face.png
parser.add_argument('--modelpath', type=str, default='weights/yolov8n-face.onnx',
help="onnx filepath")
parser.add_argument('--confThreshold', default=0.45, type=float, help='class confidence')
parser.add_argument('--nmsThreshold', default=0.5, type=float, help='nms iou thresh')
args = parser.parse_args()
# Initialize YOLOv8_face object detector
YOLOv8_face_detector = YOLOv8_face(args.modelpath, conf_thres=args.confThreshold, iou_thres=args.nmsThreshold)
srcimg: np.ndarray = cv2.imread(args.imgpath)
# Detect Objects
boxes, scores, kpts = YOLOv8_face_detector.detect(srcimg)
# Draw detections
dstimg = YOLOv8_face_detector.draw_detections(srcimg, boxes, scores, kpts)
cv2.imwrite('result.jpg', dstimg)