算法(4)——前缀和

目录

一、前缀和的定义

二、一维前缀和

三、一维前缀和OJ题

3.1、前缀和

3.2、寻找数组中心下标

3.3、除自身以外数组的乘积

3.4、和为K的数组

3.5、和可被K整除的子数组

3.6、连续数组

四、二位前缀和

4.1、二维前缀和

4.2、矩阵区域和


一、前缀和的定义

对于一个给定的数列A,他的前缀和数中 S 中 S[ i ] 表示从第一个元素到第 i 个元素的总和。

如下图:绿色区域的和就是前缀和数组中的 S [ 6 ]。

算法(4)——前缀和_第1张图片这里我们需要注意的是:前6个数的和为什么是S【6】呢?数组第6个数下标不应该是5吗?

是的,我们在下表面推导公式会讲到这个问题。

二、一维前缀和

前缀和数组的每一项是可以通过原序列以递推的方式推出来的,递推公式就是:S[ i ] = S[  i - 1 ] + A[ i ]。S[  i - 1 ] 表示前 i - 1 个元素的和,在这基础上加上 A[ i ],就得到了前 i 个元素的和 S [ i ]。

当我们要求的是序列 A 的前 n 个数之和时,如果我们是从下标为 0 的位置开始存储前缀和数组,此公式:sum = S[ r ] - S[ l - 1 ] 显然就无法使用了,为了是这个公式适用于所有情况,我们将从下标为 1 的位置开始存储前缀和,并且将下标为 0 的位置初始化为 0。

算法(4)——前缀和_第2张图片

三、一维前缀和OJ题

3.1、前缀和

【模板】前缀和_牛客题霸_牛客网 (nowcoder.com)

题目描述:

算法(4)——前缀和_第3张图片               算法(4)——前缀和_第4张图片

算法思路:

a. 先预处理出来⼀个「前缀和」数组: ⽤ dp[i] 表⽰: [1, i] 区间内所有元素的和,那么 dp[i - 1] ⾥⾯存的就是 [1, i - 1] 区间内所有元素的和,那么:可得递推公式: dp[i] = dp[i - 1] + arr[i] ;
b. 使⽤前缀和数组,「快速」求出「某⼀个区间内」所有元素的和: 当询问的区间是 [l, r] 时:区间内所有元素的和为: dp[r] - dp[l - 1]
代码实现:
#include 
#include
using namespace std;

int main() 
{
    int n,q;
    cin>>n>>q;
    vector arr(n+1,0);
    for(int i=1;i<=n;i++) cin>>arr[i];
    vector dp(n+1,0);
    for(int i=1;i<=n;i++) dp[i]=arr[i]+dp[i-1];
    int l,r;
    while(q--)
    {
        cin>>l>>r;
        cout<

3.2、寻找数组中心下标

724. 寻找数组的中心下标 - 力扣(LeetCode)

题目描述:

算法(4)——前缀和_第5张图片算法思路:

从中⼼下标的定义可知,除中⼼下标的元素外,该元素左边的「前缀和」等于该元素右边的「后缀 和」。
因此,我们可以先预处理出来两个数组,⼀个表⽰前缀和,另⼀个表⽰后缀和。
然后,我们可以⽤⼀个 for 循环枚举可能的中⼼下标,判断每⼀个位置的「前缀和」以及「后缀和」,如果⼆者相等,就返回当前下标。
代码实现:
class Solution {
public:
    int pivotIndex(vector& nums) 
    {
        int n=nums.size();
        vector f(n),g(n);
        //前缀和
        for(int i=1;i=0;i--)
            g[i]=nums[i+1]+g[i+1];

        for(int i=0;i

3.3、除自身以外数组的乘积

238. 除自身以外数组的乘积 - 力扣(LeetCode)

题目描述:

算法(4)——前缀和_第6张图片

算法思路:

注意题⽬的要求,不能使⽤除法,并且要在 O(N) 的时间复杂度内完成该题。那么我们就不能使
⽤暴⼒的解法,以及求出整个数组的乘积,然后除以单个元素的⽅法。 继续分析,根据题意,对于每⼀个位置的最终结果 ret[i] ,它是由两部分组成的:
i. nums[0] * nums[1] * nums[2] * ... * nums[i - 1]
ii. nums[i + 1] * nums[i + 2] * ... * nums[n - 1]
于是,我们可以利⽤前缀和的思想,使⽤两个数组 post 和 suf,分别处理出来两个信息:
i. post 表⽰:i 位置之前的所有元素,即 [0, i - 1] 区间内所有元素的前缀乘积,
ii. suf 表⽰: i 位置之后的所有元素,即 [i + 1, n - 1] 区间内所有元素的后缀乘积,然后再处理最终结果。
代码实现:
class Solution {
public:
    vector productExceptSelf(vector& nums) 
    {
        int n=nums.size();
        vector g(n),f(n);
        //前缀积
        f[0]=g[n-1]=1;
        for(int i=1;i=0;i--)
            g[i]=g[i+1]*nums[i+1];

        vector arr(n);
        for(int i=0;i

3.4、和为K的数组

560. 和为 K 的子数组 - 力扣(LeetCode)

题目描述:

算法(4)——前缀和_第7张图片

算法思路:

i 为数组中的任意位置,⽤ sum[i] 表⽰ [0, i] 区间内所有元素的和。
想知道有多少个「以 i 为结尾的和为 k 的⼦数组」,就要找到有多少个起始位置为 x1, x2, x3... 使得 [x, i] 区间内的所有元素的和为 k 。那么 [0, x] 区间内的和是不是就是 sum[i] - k 了。于是问题就变成:
找到在 [0, i - 1] 区间内,有多少前缀和等于 sum[i] - k 的即可。
我们不⽤真的初始化⼀个前缀和数组,因为我们只关⼼在 i 位置之前,有多少个前缀和等于 sum[i] - k 。因此,我们仅需⽤⼀个哈希表,⼀边求当前位置的前缀和,⼀边存下之前每⼀种 前缀和出现的次数。

代码实现:

class Solution {
public:
    int subarraySum(vector& nums, int k) 
    {
        unordered_map hash;
        int sum=0,ret=0;
        hash[0]=1;
        for(auto x:nums)
        {
            sum+=x;
            if(hash.count(sum-k))
            {
                ret+=hash[sum-k];
            }
            hash[sum]++;
        }
        return ret;
    }
};

3.5、和可被K整除的子数组

974. 和可被 K 整除的子数组 - 力扣(LeetCode)

题目描述:

算法(4)——前缀和_第8张图片

算法思路:

同余定理
如果 (a - b) % n == 0 ,那么我们可以得到⼀个结论: a % n == b % n 。⽤⽂字叙述就是,如果两个数相减的差能被 n 整除,那么这两个数对 n 取模的结果相同。
例如: (26 - 2) % 12 == 0 ,那么 26 % 12 == 2 % 12 == 2
c++ 中负数取模的结果,以及如何修正「负数取模」的结果
a. c++ 中关于负数的取模运算,结果是「把负数当成正数,取模之后的结果加上⼀个负号」。
例如: -1 % 3 = -(1 % 3) = -1
b. 因为有负数,为了防⽌发⽣「出现负数」的结果,以 (a % n + n) % n 的形式输出保证为正。
例如: -1 % 3 = (-1 % 3 + 3) % 3 = 2
i 为数组中的任意位置,⽤ sum[i] 表⽰ [0, i] 区间内所有元素的和。
想知道有多少个「以 i 为结尾的可被 k 整除的⼦数组」,就要找到有多少个起始位置为 x1,x2, x3... 使得 [x, i] 区间内的所有元素的和可被 k 整除。
[0, x - 1] 区间内所有元素之和等于 a [0, i] 区间内所有元素的和等于 b ,可得 (b - a)%k ==0 
由同余定理可得, [0, x - 1] 区间与 [0, i] 区间内的前缀和同余。于是问题就变成:
找到在 [0, i - 1] 区间内,有多少前缀和的余数等于 sum[i] % k 的即可。
我们不⽤真的初始化⼀个前缀和数组,因为我们只关⼼在 i 位置之前,有多少个前缀和等于
sum[i] - k 。因此,我们仅需⽤⼀个哈希表,⼀边求当前位置的前缀和,⼀边存下之前每⼀种前缀和出现的次数。
代码实现:
class Solution {
public:
    int subarraysDivByK(vector& nums, int k) 
    {
        unordered_map hash;  //第一个int存余数,第二个存个数
        int sum=0,ret=0;
        hash[0%k]=1; 
        for(auto x:nums)
        {
            sum+=x;
            int r=(sum%k+k)%k;
            if(hash.count(r)) ret+=hash[r];
            hash[r]++;
        }
        return ret;
    }
};

3.6、连续数组

525. 连续数组 - 力扣(LeetCode)

题目描述:

算法(4)——前缀和_第9张图片

算法思路:
稍微转化⼀下题⽬,就会变成我们熟悉的题:
本题让我们找出⼀段连续的区间, 0 1 出现的次数相同。
如果将 0 记为 -1 1 记为 1 ,问题就变成了找出⼀段区间,这段区间的和等于 0
于是,就和 和为 K 的⼦数组 这道题的思路⼀样
i 为数组中的任意位置,⽤ sum[i] 表⽰ [0, i] 区间内所有元素的和。
想知道最⼤的「以 i 为结尾的和为 0 的⼦数组」,就要找到从左往右第⼀个 x1 使得 [x1, i]
区间内的所有元素的和为 0 。那么 [0, x1 - 1] 区间内的和是不是就是 sum[i] 了。于是问题就变成:
找到在 [0, i - 1] 区间内,第⼀次出现 sum[i] 的位置即可。
我们不⽤真的初始化⼀个前缀和数组,因为我们只关⼼在 i 位置之前,第⼀个前缀和等于 sum[i]的位置。因此,我们仅需⽤⼀个哈希表,⼀边求当前位置的前缀和,⼀边记录第⼀次出现该前缀和的位置。
代码实现:
class Solution {
public:
    int findMaxLength(vector& nums) 
    {
        unordered_map hash;
        hash[0]=-1;
        int sum=0,ret=0;
        for(int i=0;i

四、二位前缀和

和一维前缀和的原理类似,只不过二维前缀和求的是一个矩阵中所有元素的和。
算法(4)——前缀和_第10张图片

例如:对与 x = 4,y = 3 这么一组输入,就是将原矩阵序列中蓝色区域的元素相加,得到的结果便是前缀和矩阵S中 S[ 4 ][ 3 ] 的值。

例如上图:我们要求蓝色矩阵中所有元素的和。

算法(4)——前缀和_第11张图片

 现在就差最后一步了,怎么求出前缀和矩阵中的每一个值嘞??同理利用递推关系求就阔以啦。

  S[ i ][ j ] = S[ i - 1 ][ j ] + S[ i ][ j - 1 ] - S[ i - 1][ j - 1 ] + a[ i ][ j ]

五、二维前缀和OJ题

4.1、二维前缀和

【模板】二维前缀和_牛客题霸_牛客网 (nowcoder.com)

题目描述:

算法(4)——前缀和_第12张图片

算法思路:

  • 首先对矩阵进行预处理,得到对应的前缀和矩阵。
  • 利用前缀和矩阵相应区域的加减运算,即可得到对应子矩阵中所有元素的累加和。

图解展示(图中presum[3][4]除了包括绿色部分,还包括其它重叠的部分,其它几项也一样,另外presum[1][1]被多减了一次,所以最后要加一次):

算法(4)——前缀和_第13张图片

代码实现:

#include 
#include
using namespace std;

int main() 
{
    int n,m,q;
    cin>>n>>m>>q;
    vector> arr(n+1,vector(m+1));
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            cin>>arr[i][j];
        }
    }

    vector> dp(n+1,vector(m+1));
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            dp[i][j]=dp[i-1][j]+dp[i][j-1]+arr[i][j]-dp[i-1][j-1];
        }
    }

    int x1,x2,y1,y2;
    while(q--)
    {
        cin>>x1>>y1>>x2>>y2;
        cout<

4.2、矩阵区域和

1314. 矩阵区域和 - 力扣(LeetCode)

题目描述

算法(4)——前缀和_第14张图片

算法思路:

⼆维前缀和的简单应⽤题,关键就是我们在填写结果矩阵的时候,要找到原矩阵对应区域的「左上
⻆」以及「右下⻆」的坐标
左上⻆坐标: x1 = i - k y1 = j - k ,但是由于会「超过矩阵」的范围,因此需要对 0取⼀个 max 。因此修正后的坐标为: x1 = max(0, i - k), y1 = max(0, j - k) ;
右下⻆坐标: x1 = i + k y1 = j + k ,但是由于会「超过矩阵」的范围,因此需要对 m - 1 ,以及 n - 1 取⼀个 min 。因此修正后的坐标为: x2 = min(m - 1, i + k),
y2 = min(n - 1, j + k) 。 然后将求出来的坐标代⼊到「⼆维前缀和矩阵」的计算公式上即可

代码实现:

class Solution {
public:
    vector> matrixBlockSum(vector>& mat, int k)    
    {
        int m=mat.size(),n=mat[0].size();
        vector> dp(m+1,vector(n+1));

        //预处理矩阵
        for(int i=1;i<=m;i++)
        {
            for(int j=1;j<=n;j++)
            {
               dp[i][j] = dp[i - 1][j] + dp[i][j - 1] - dp[i - 1][j - 1] + mat[i - 1][j - 1];
            }
        }
        //使用前缀和矩阵
        vector> ret(m,vector(n));
        for(int i=0;i

你可能感兴趣的:(算法,c++,开发语言,leetcode,数据结构)