- c++ 算法之二分答案详解
必胜的小铭
c++算法c++算法开发语言
二分答案是c++之中一个简单而重要的算法,每一个OIer必备的基础算法,你知道它究竟是什么吗?目录一、简介1.定义2.时间复杂度二、核心代码三、例题1.跳石头1.题目描述2.解法2.进击的奶牛1.题目描述2.思路一、简介1.定义二分答案是一种二分搜索,二分搜索(英语:binarysearch),也称折半搜索(英语:half-intervalsearch)、对数搜索(英语:logarithmicse
- 《深入浅出HTTPS》读书笔记(7):安全的密码学Hash算法
earthzhang2021
httpshttp网络协议网络1024程序员节
密码学Hash算法除了常规Hash算法的特性,还应该具备下面三个特性。1)强抗碰撞性(CollisionResistance)如果两个不相同的值能够得到同样的摘要值,表示产生了Hash碰撞。密码学中,Hash算法必须具备强抗碰撞性,否则不应该使用。2)弱抗碰撞性(Secondpre-imageResistance)给定一个消息和这个消息对应的摘要值,很难找到一条不同的消息也具有相同的摘要值。如果某
- 《深入浅出HTTPS》读书笔记(5):随机数
earthzhang2021
https网络协议http
密码学中随机数的用途非常大,其他密码学算法内部都会用到随机数。1)效率在软件或者密码学应用中需要大量的随机数,必须在很短的时间内生成随机数。2)随机性生成的随机数只要不存在统计学偏差,那么这个随机数就具备随机性(randomness)。3)不可预测性密码学中的随机数必须具备不可预测性,否则就会存在安全问题,当然非密码学应用使用具备随机性的随机数就足够了。4)不可重现性所谓不可重现性(unrepea
- LLM的实时性:迈向毫秒级响应的AI
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
LargeLanguageModel(LLM),实时性,响应时间,微服务架构,并行处理,知识图谱,优化算法,延迟最小化1.背景介绍大型语言模型(LLM)在自然语言处理领域取得了令人瞩目的成就,展现出强大的文本生成、翻译、摘要和问答能力。然而,现有的LLM模型通常面临着响应时间较慢的问题,这限制了其在实时应用场景中的应用。例如,在聊天机器人、实时翻译和智能客服等领域,用户期望能够获得即时响应,而传统
- spring cloud netflix笔记
精神病院丶吴院长
个人笔记springcloudspring
Ribbon可以通过配置文件制定负载均衡的规则默认使用轮训算法来实现负载均衡根据响应时间做权重两个自动装配类RibbonAutoConfiguration和LoadBalancerAutoConfiguration装配类会让加了LoadBalanced注解的RestTemplate加上一个拦截器LoadBalancerInterceptor关键类LoadBalancerInterceptorRib
- Java 大视界 -- Java 大数据中的强化学习算法实践与优化 (57)
青云交
大数据新视界Java大视界大数据强化学习算法Q-learning经验回放探索利用平衡智能能源管理算法优化
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- 日常题解——LCA和RMQ1
xiaowang524
深度优先算法图论
Tarjan算法:DFS+并查集求LCARMQ查询区间最大最小值,st(动态规划写法)dfs序/dfn序->使用dfn编号构建的dfs序,在dfs序上rmq查询区间最小值得到的就是lca的编号,映射得到的是节点板子话不多说,贴代码这个代码没有具体的建树,只有核心的代码原理和代码实现,建树用python的邻接表最方便,遍历子节点部分参照Python遍历邻接表逻辑理解publicclassLCA_RM
- 深入解析:Python中的决策树与随机森林
小鹿( ﹡ˆoˆ﹡ )
Pythonpython决策树随机森林Python
在这个数据驱动的时代,机器学习技术已经成为许多企业和研究机构不可或缺的一部分。其中,决策树和随机森林作为两种强大的算法,在分类和回归任务中表现尤为出色。本文将带领大家深入了解这两种算法在Python中的实现,从基础到实战,逐步揭开它们的神秘面纱。引言决策树是一种非常直观的预测模型,它通过一系列规则对数据进行分割,最终形成树状结构。而随机森林则是基于决策树的一种集成学习方法,通过构建多个决策树并取其
- android嵌入式开发环境搭建,2024最新腾讯Android面试分享
2401_84414990
程序员android面试职场和发展
Android开发面试的几部分1、基础知识基础知识包括几个部分:Java(JDK、JVM)、Android、数据结构和算法、计算机基础、设计模式,有的还会问Flutter。Java部分:不太推荐这部分只看博客,因为很多博客并不系统也不完整,推荐完整看一遍《深入理解Java虚拟机》这本书,基本上这里面涵盖了JVM相关的所有面试问题,包括内存分区、GC机制、内存模型、锁、字节码、类加载等。JDK的部分
- 使用Scikit-learn实现支持向量机分类器
清水白石008
pythonPython题库scikit-learn支持向量机python
使用Scikit-learn实现支持向量机分类器引言支持向量机(SupportVectorMachine,SVM)是一种强大的监督学习算法,广泛应用于分类和回归任务。SVM的核心思想是通过寻找一个最佳的超平面来分隔不同类别的数据点。本文将详细介绍如何使用Python的Scikit-learn库实现一个支持向量机分类器,包括数据准备、模型训练、评估和可视化等步骤。1.支持向量机的基本原理支持向量机的
- 设计模式-策略模式
whale fall
设计模式设计模式策略模式
策略模式(StrategyPattern)是一种行为设计模式,它定义了一系列算法(策略),并将每个算法封装起来,使得它们可以互相替换。策略模式让算法的变化独立于使用算法的客户端。即将不同的算法封装成独立的策略类,然后在运行时根据需求选择具体的策略进行操作。下面是一个使用Python实现策略模式的示例。1.定义策略接口首先,定义一个策略接口(在Python中通常是一个抽象基类),该接口描述所有策略类
- Android Camera的进化史
网易数智
开发
Part1:Camera1(Android的傻瓜机)Camera1的开发中,打开相机,设置参数的过程是同步的,就跟用户实际使用camera的操作步骤一样。但是如果有耗时情况发生时,会导致整个调用线程等待;开发者如果想要个性化设置camera效果,无法手动设置调整参数,需要依靠第三方算法对于回调的数据进行处理(NV21)。而且不同手机的回调数据效果都是不一样的,采用第三方算法调整,通常效果不好;开发
- 网络工程师 (12)软件开发与测试
IT 青年
软考网络工程师网络工程师软考
一、软件设计(一)定义与目的软件设计是从软件需求出发,设计软件的整体结构、功能模块、实现算法及编写代码的过程,旨在确定系统如何完成预定任务。其目标是确保目标系统能够抽象、普遍地完成预定任务,并为后续的软件开发奠定坚实基础。(二)内容系统架构设计:确定软件系统的整体结构,包括各个子系统、模块之间的交互方式和接口定义。功能模块设计:根据需求分析的结果,将系统功能划分为多个功能模块,并明确每个模块的功能
- 大语言模型丨ChatGPT-4o深度科研应用、论文与项目撰写、数据分析、机器学习、深度学习及AI绘图(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)
赵钰老师
ChatGPTpython人工智能语言模型深度学习数据分析chatgpt机器学习随机森林
目录第一章、2024大语言模型最新进展与ChatGPT各模型第二章、ChatGPT-4o提示词使用方法与高级技巧(最新加入思维链及逆向工程及GPTs)第三章、ChatGPT4-4o助力日常生活、学习与工作第四章、基于ChatGPT-4o课题申报、论文选题及实验方案设计第五章、基于ChatGPT-4o信息检索、总结分析、论文写作与投稿、专利idea构思与交底书的撰写第六章、ChatGPT-4o编程入
- android Camera 的进化
消失的旧时光-1943
音视频android
引言Android的camera发展经历了3个阶段:camera1-》camera2-》cameraX。正文Camera1Camera1的开发中,打开相机,设置参数的过程是同步的,就跟用户实际使用camera的操作步骤一样。但是如果有耗时情况发生时,会导致整个调用线程等待;存在的限制:开发者如果想要个性化设置camera效果,无法手动设置调整参数,需要依靠第三方算法对于回调的数据进行处理(NV21
- hot100_21. 合并两个有序链表
TTXS123456789ABC
BS_算法链表数据结构
将两个升序链表合并为一个新的升序链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。示例1:输入:l1=[1,2,4],l2=[1,3,4]输出:[1,1,2,3,4,4]示例2:输入:l1=[],l2=[]输出:[]示例3:输入:l1=[],l2=[0]输出:[0]迭代思路我们可以用迭代的方法来实现上述算法。当l1和l2都不是空链表时,判断l1和l2哪一个链表的头节点的值更小,将较小值的
- 数据库管理-第287期 Oracle DB 23.7新特性一览(20250124)
胖头鱼的鱼缸(尹海文)
Oracle数据库oracle
数据库管理287期2025-01-24数据库管理-第287期OracleDB23.7新特性一览(20250124)1AI向量搜索:算术和聚合运算2更改Compatible至23.6.0,以使用23.6或更高版本中的新AI向量搜索功能3CloudDeveloper包4DBMS_DEVELOPER.GET_METADATA:用于检索数据库对象元数据的API5PL/SQL中的维度算法支持6二元性视图放宽
- spark和python的区别_Spark入门(Python)
weixin_39934257
spark和python的区别
Spark是第一个脱胎于该转变的快速、通用分布式计算范式,并且很快流行起来。Spark使用函数式编程范式扩展了MapReduce模型以支持更多计算类型,可以涵盖广泛的工作流,这些工作流之前被实现为Hadoop之上的特殊系统。Spark使用内存缓存来提升性能,因此进行交互式分析也足够快速(就如同使用Python解释器,与集群进行交互一样)。缓存同时提升了迭代算法的性能,这使得Spark非常适合数据理
- 【3D目标检测】YOLO3D 基于图像的3D目标检测算法
BILLY BILLY
YOLOv8系列3d目标检测YOLO
参考文档:https://ruhyadi.github.io/project/computer-vision/yolo3d/代码:https://github.com/ruhyadi/yolo3d-lightning本次分享将会从以下四个方面展开:物体检测模型中的算法选择单目摄像头下的物体检测神经网络训练预测参数的设计模型训练与距离测算1.物体检测模型中的算法选择物体检测(ObjectDetect
- Python软体中使用Scikit-learn库训练简单线性回归模型
清水白石008
Python题库pythonpythonscikit-learn线性回归
Python软体中使用Scikit-learn库训练简单线性回归模型1.引言作为数据科学家和机器学习从业者,我们经常需要处理各种类型的数据,并从中提取有价值的信息。其中,线性回归是最基础也是最常用的机器学习算法之一。它可以帮助我们预测连续型目标变量,在很多实际应用场景中都有广泛应用,比如房价预测、销量预测等。在本文中,我将使用Python的Scikit-learn库,介绍如何训练一个简单的线性回归
- 超实用的Python机器学习教程 - 基于scikit - learn库
AI_DL_CODE
人工智能python机器学习人工智能
一、机器学习简介机器学习的定义与概念机器学习是一门多领域交叉学科,它涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。简单来说,机器学习是让计算机从数据中学习规律并进行预测或决策的技术。它旨在构建能够自动从数据中学习模式并进行改进的算法,而无需被明确编程来执行特定任务。例如,我们可以让机器学习算法通过分析大量的历史天气数据来预测未来的天气情况,或者通过分析用户的购物历史来推荐可能感兴趣
- 代码随想录算法训练营第四十一天-动态规划-股票-123.买卖股票的最佳时机III
taoyong001
算法动态规划c++leetcode
题目要求最多进行两次买卖,而且每次买卖的交易日期不能交叠,必须要独立题目的关键是拆分动规五部曲:动态数组定义dp[i][0]表示第i天不操作dp[i][1]表示第i天持有股票,可能会延续前一天已买入的状态,也可能是当天买入dp[i][2]表示第i天不持有,可能会延续前一天不持有状态,也可能是当天卖出dp[i][3]表示第i天第二次持有dp[i][4]表示第i天第二次不持有递推公式:dp[i][0]
- 从零开始学习电池SOC算法
洛溪之恋
新能源BMS算法
电池的SOC(StateofCharge,荷电状态)估算是电池管理系统(BMS)中的核心算法之一。SOC表示电池当前剩余电量与标称容量的比值,通常以百分比形式表示。准确的SOC估算对于电池的性能、安全性和寿命管理至关重要。以下是几种常见的SOC估算算法及其特点:开路电压法(OCV法)原理:通过测量电池的开路电压(OpenCircuitVoltage,OCV)来估算SOC。电池的开路电压与SOC之间
- 【刷题总结】哈希系列问题
松鼠大哥
刷题总结LeetCode
文章目录一、算法解析二、解题模板1、C++内相关API2、使用哈希集合查重三、哈希系列问题1、哈希表设计2、去重\判重问题(哈希集合)(1)重复元素查找(2)几数之和(3)求交集(4)是否循环问题(5)判断是否存在3、构造哈希表(1)键---下标(2)键---统计个数(3)字母---单词(字典映射)(5)其他4、滑动窗口类问题(哈希映射)5、哈希设计键(1)排序后字符串/数组为key(2)指针/节
- JAVA-基础⑦二维数组与排序
冷山寒水
java开发语言
1、冒泡排序(BubbleSort)冒泡排序是所有排序算法中最简单的一个排序,也是我个人学习的第一个排序方法,在这里重新进行一个总结。冒泡排序(BubbleSort)就如同其名称一样,水中的气泡由于压强的原因所以从下到上其大小也是从小到大,如下图整个排序过程分为一个大循环和大循环中的很多小循环进行,我们先来讲其中的小循环他做的事情:每次小循环其实做的事情都很简单,就是单纯的循环所有数据找到其中最大
- 【Python蓝桥杯备赛宝典】
殇在山风
蓝桥杯Pythonpython蓝桥杯开发语言算法贪心算法动态规划排序算法
文章目录一、基础数据结构1.1链表1.2队列1.3栈1.4二叉树1.5堆二、基本算法2.1算法复杂度2.2尺取法2.3二分法2.4三分法2.5倍增法和ST算法2.6前缀和与差分2.7离散化2.8排序与排列2.9分治法2.10贪心法1.接水时间最短问题2.糖果数量有限问题3.分发时间最短问题4.采摘苹果最多问题三、搜索3.1BFS和DFS基础3.2剪枝3.3洪水填充3.4BFS与最短路径3.5双向广
- 如何计算迭代次数和路径成本,针对本人所写的引导RRT算法
上海迪士尼35
算法matlab
在您提供的RRT算法代码中,迭代次数和路径成本的计算可以通过以下方式实现:迭代次数迭代次数指的是RRT算法主循环执行的次数,即从开始到找到目标点或达到最大迭代次数为止。在您的代码中,这个值可以通过变量i来获取,当循环结束时,i的值就是实际执行的迭代次数。您可以在循环结束后添加如下代码来显示迭代次数:real_iterations=i;%实际迭代次数disp(['实际迭代次数:',num2str(r
- Meta技术滥用背后的道德危机
XianxinMao
人工智能
标题:Meta技术滥用背后的道德危机文章信息摘要:Meta内部存在技术滥用和道德模糊的深层次问题,员工可能通过AI作弊掩盖能力不足,反映了公司文化中的压力与竞争。Meta的“有害内容检测”算法虽技术精确,却意外将公司使命标记为“有害”,揭示了内部逻辑的矛盾。大公司中,创新和真相常被公司利益和官僚主义压制,程序员的理想主义与现实文化冲突,妥协有时不可避免。尽管如此,程序员应保持对技术的热爱,尤其是使
- 算法【分组背包】
还有糕手
算法动态规划
分组背包是指多个物品分组,每组只能取1件。每一组的物品都可能性展开就可以了。注意时间复杂度不会升阶,O(物品数量*背包容量)。下面通过题目加深理解。题目一测试链接:通天之分组背包-洛谷分析:这道题是分组背包的模板,对每个分组进行可能性的展开即不取这个分组和取这个分组的每一个能取的物品。下面代码采用记忆化搜索,严格位置依赖和空间压缩的解法不再赘述。代码如下。#include#includeusing
- Codeforces Round 130 (Div. 2) E. Blood Cousins(LCA+DFS序+二分)【2100】
Auto114514
ACM—树深度优先算法图论
题目链接https://codeforces.com/contest/208/problem/E思路此题有两个要点:第一,快速找到节点uuu的ppp级祖先。第二,在以节点uuu为根的子树中找到与节点uuu深度相同的节点的个数。对于第一点,我们可以使用LCA算法在树上倍增,实现快速查询。对于第二点,我们可以按照深度,将所有节点的DFS序全部存储到vector中,因为DFS序的单调性,直接二分查找即可
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置