多维时序 | Matlab实现CNN-BiGRU-Mutilhead-Attention卷积双向门控循环单元融合多头注意力机制多变量时间序列预测

多维时序 | Matlab实现CNN-BiGRU-Mutilhead-Attention卷积双向门控循环单元融合多头注意力机制多变量时间序列预测

目录

    • 多维时序 | Matlab实现CNN-BiGRU-Mutilhead-Attention卷积双向门控循环单元融合多头注意力机制多变量时间序列预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

多维时序 | Matlab实现CNN-BiGRU-Mutilhead-Attention卷积双向门控循环单元融合多头注意力机制多变量时间序列预测_第1张图片

多维时序 | Matlab实现CNN-BiGRU-Mutilhead-Attention卷积双向门控循环单元融合多头注意力机制多变量时间序列预测_第2张图片

多维时序 | Matlab实现CNN-BiGRU-Mutilhead-Attention卷积双向门控循环单元融合多头注意力机制多变量时间序列预测_第3张图片
多维时序 | Matlab实现CNN-BiGRU-Mutilhead-Attention卷积双向门控循环单元融合多头注意力机制多变量时间序列预测_第4张图片

多维时序 | Matlab实现CNN-BiGRU-Mutilhead-Attention卷积双向门控循环单元融合多头注意力机制多变量时间序列预测_第5张图片
多维时序 | Matlab实现CNN-BiGRU-Mutilhead-Attention卷积双向门控循环单元融合多头注意力机制多变量时间序列预测_第6张图片
多维时序 | Matlab实现CNN-BiGRU-Mutilhead-Attention卷积双向门控循环单元融合多头注意力机制多变量时间序列预测_第7张图片
多维时序 | Matlab实现CNN-BiGRU-Mutilhead-Attention卷积双向门控循环单元融合多头注意力机制多变量时间序列预测_第8张图片
多维时序 | Matlab实现CNN-BiGRU-Mutilhead-Attention卷积双向门控循环单元融合多头注意力机制多变量时间序列预测_第9张图片

基本介绍

Matlab实现CNN-BiGRU-Mutilhead-Attention卷积双向门控循环单元融合多头注意力机制多变量时间序列预测
1.data为数据集,格式为excel,4个输入特征,1个输出特征,考虑历史特征的影响,多变量时间序列预测;
2.main.m为主程序文件,运行即可;
3.命令窗口输出R2、MAE、MAPE、MSE和MBE,可在下载区获取数据和程序内容;
注意程序和数据放在一个文件夹,运行环境为Matlab2023a及以上。
CNN卷积核大小:卷积核大小决定了CNN网络的感受野,即每个卷积层可以捕获的特征的空间范围。选择不同大小的卷积核可以影响模型的特征提取能力。较小的卷积核可以捕获更细粒度的特征,而较大的卷积核可以捕获更宏观的特征。
BiGRU双向门控循环单元个数:BiGRU是一种适用于序列数据的循环神经网络,其单元个数决定了模型的复杂性和记忆能力。较多的BiGRU单元可以提高模型的学习能力,但可能导致过拟合。
多头自注意力层 (Multihead-Self-Attention):Multihead-Self-Attention多头注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。在时序预测任务中,注意力机制可以用于对序列中不同时间步之间的相关性进行建模。

程序设计

  • 完整源码和数据获取方式私信回复Matlab实现CNN-BiGRU-Mutilhead-Attention卷积双向门控循环单元融合多头注意力机制多变量时间序列预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res =xlsread('data.xlsx','sheet1','A2:H104');

%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例

num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

f_ = size(P_train, 1);                  % 输入特征维度

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);


参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

你可能感兴趣的:(时序预测,CNN-BiGRU,Mutilhead,Attention,卷积双向门控循环单元,融合多头注意力机制,多变量时间序列预测)