Elasticsearch是一个基于Apache Lucene库实现的,Restful风格的,分布式搜索和数据分析引擎。基于倒排索引技术,实现了高性能的全文检索和数据分析功能。
倒排索引:搜索速度快
docker run -d \
--name es \
-e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \
-e "discovery.type=single-node" \
-v es-data:/usr/share/elasticsearch/data \
-v es-plugins:/usr/share/elasticsearch/plugins \
--privileged \
--network fitzone\
-p 9200:9200 \
-p 9300:9300 \
elasticsearch:7.12.1
docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=fitzone \
-p 5601:5601 \
kibana:7.12.1
docker exec -it es ./bin/elasticsearch-plugin
install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip
type
:字段数据类型,常见的简单类型有:
字符串:text
(可分词的文本)、keyword
(精确值)
数值:long
、integer
、short
、byte
、double
、float
、
布尔:boolean
日期:date
对象:object
index
:是否创建索引,默认为true
analyzer
:使用哪种分词器
properties
:该字段的子字段
①创建索引库
PUT /索引库名称
{
"mappings": {
"properties": {
"字段名":{
"type": "text",
"analyzer": "ik_smart"
},
"字段名2":{
"type": "keyword",
"index": "false"
},
"字段名3":{
"properties": {
"子字段": {
"type": "keyword"
}
}
},
}
}
}
②修改索引库
PUT /索引库名/_mapping
{
"properties": {
"新字段名":{
"type": "integer"
}
}
}
③查询索引库:GET /索引库名
④删除索引库:DELETE /索引库名
①新增文档
POST /索引库名/_doc/文档id
{
"字段1": "值1",
"字段2": "值2",
"字段3": {
"子属性1": "值3",
"子属性2": "值4"
},
}
②全局修改文档
PUT /{索引库名}/_doc/文档id
{
"字段1": "值1",
"字段2": "值2",
}
③局部修改文档
POST /{索引库名}/_update/文档id
{
"doc": {
"字段名": "新的值",
}
}
④查询文档:GET /索引库名/_doc/文档id
⑤删除文档:DELETE /索引库名/_doc/文档id
初始化RestClient
//导依赖
org.elasticsearch.client
elasticsearch-rest-high-level-client
//指定版本
8
8
7.12.1
@Bean
public RestHighLevelClient highLevelClient(){
return new RestHighLevelClient(RestClient.builder(
HttpHost.create("http://islunatic.icu:9200")
));
}
@Autowired
private ActivityService activityService;
@Autowired
private RestHighLevelClient client;
@Test
public void testA() throws IOException {
List list = activityService.list();
//数据导入
BulkRequest bulkRequest = new BulkRequest("activity");
for (Activity activity : list) {
IndexRequest indexRequest = new IndexRequest();
indexRequest.id(activity.getId().toString()).source(JSON.toJSONString(activity),XContentType.JSON);
//批量添加数据
bulkRequest.add(indexRequest);
}
client.bulk(bulkRequest,RequestOptions.DEFAULT);
}
//获取request
SearchRequest request = new SearchRequest("activity");
//DSL语句
Integer limit = activityPageDTO.getLimit();
Integer page = activityPageDTO.getPage();
//分页查询、高亮显示、排序操作
request.source().from(page)
.size(limit)
.query(QueryBuilders.matchAllQuery())
.sort("createTime", SortOrder.ASC)
.highlighter(SearchSourceBuilder.highlight()
.field("cover")
.preTags("")
.postTags(""));
SearchResponse search = client.search(request, RequestOptions.DEFAULT);
//解析响应
return handleResponse(search);
//解析数据
private Page handleResponse(SearchResponse response) {
SearchHits searchHits = response.getHits();
// 1.获取总条数
long total = searchHits.getTotalHits().value;
System.out.println("共搜索到" + total + "条数据");
// 2.遍历结果数组
SearchHit[] hits = searchHits.getHits();
for (SearchHit hit : hits) {
// 3.得到_source,也就是原始json文档
String source = hit.getSourceAsString();
// 4.反序列化并打印
JSON.parseObject(source, Activity.class);
}
return null;
}