- 计算机毕业设计JAVA房屋租赁系统mybatis
煦洋cxsj985
mybatisjava开发语言
计算机毕业设计JAVA房屋租赁系统mybatis计算机毕业设计JAVA房屋租赁系统mybatis+源码+调试部署+系统+数据库+lw本源码技术栈:项目架构:B/S架构开发语言:Java语言开发软件:ideaeclipse前端技术:Layui、HTML、CSS、JS、JQuery等技术后端技术:JAVA运行环境:Win10、JDK1.8数据库:MySQL5.7/8.0源码地址:https://pan
- 前馈神经网络——最基本的神经网络架构
纠结哥_Shrek
神经网络人工智能深度学习
前馈神经网络(FeedforwardNeuralNetwork,FNN)是一种基本的人工神经网络类型,其结构简单,广泛应用于各种机器学习任务。它由多个层次组成,包括输入层、隐藏层和输出层。FNN中的每一层与下一层的神经元之间是完全连接的,但不同层之间的神经元不相互连接。FNN以其数据流动方式来命名——前馈,意味着信息从输入层开始,经过一系列的隐藏层,最终输出结果,不存在任何循环或反馈连接。与递归神
- pytorch深度Q网络
纠结哥_Shrek
pytorch人工智能python
DQN引入了深度神经网络来近似Q函数,解决了传统Q-learning在处理高维状态空间时的瓶颈,尤其是在像Atari游戏这样的复杂环境中。DQN的核心思想是使用神经网络Q(s,a;θ)Q(s,a;\theta)Q(s,a;θ)来近似Q值函数,其中θ\thetaθ是神经网络的参数。DQN的关键创新包括:经验回放(ExperienceReplay):在强化学习中,当前的学习可能会依赖于最近的经验,容易
- 灰色预测模型_预测模型——灰色模型
weixin_39548740
灰色预测模型
网上有许多大佬写的灰色预测模型,写的非常的棒,但是我个人感觉,在公式部分,许多大佬在写最小二乘法得出a,b的值的时候并不是那么细致,所以我写这一篇灰色模型既是详细介绍公式的由来,同时也是为后续我要写的组合模型,如灰色模型与神经网络的结合,灰色模型与马尔可夫链式模型的结合做一个铺垫,希望对大家有帮助。1,灰色系统介绍灰色系统是由华中科技大学的邓聚龙教授于80年代初创立,该系统作为新兴的横断学科,在短
- AI 大模型创业:如何利用商业优势?
AI天才研究院
大数据AI人工智能ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
第1章:AI大模型概述1.1AI大模型的概念与演进AI大模型(Large-scaleArtificialIntelligenceModels)是指通过大规模数据训练得到的复杂神经网络模型。这些模型通常具有数十亿甚至千亿个参数,能够实现从自然语言处理到计算机视觉、语音识别等广泛领域的任务。AI大模型的概念起源于20世纪80年代,当时研究人员提出了深度学习(DeepLearning)这一概念。深度学习
- 【课程设计推荐】基于JSP的论文格式化系统后台模块的设计与实现
想念@思恋
课程设计jspjava课程设计javajsp
关注【墨岚创客】,回复【毕设】,赠送免费毕设资源,具体联系方式见文末摘要论文的格式修改是一件很麻烦的事情,一篇论文在定稿以前为了让格式达到标准,需要修改很多次,浪费了大量时间。本系统的设计初衷就是为了解决论文书写格式的规范化,方便学者论文格式的自动生成。本系统是基于Java平台的Web应用程序。采用JSP作为后台开发语言,HTML和JavaScript作为前台开发语言,MYSQL5.0作为后台数据
- 2025年美赛数学建模 MCM Problem B: Managing Sustainable Tourism 问题 B:可持续旅游管理 代码解析
2025年数学建模美赛
2025年美赛MCM/ICM数学建模旅游2025美赛2025年数学建模美赛python代码matlab可持续旅游管理
目录代码框架:遗传算法优化可持续旅游模型python代码代码解析:matlab代码代码解析:代码框架:遗传算法优化可持续旅游模型python代码importnumpyasnpimportrandomimportmatplotlib.pyplotasplt#定义遗传算法的参数POP_SIZE=100#种群大小GENS=500#迭代代数MUTATION_RATE=0.01#变异率CROSSOVER_R
- Python 实现文本摘要功能
热爱技术的小胡
python
互联网时代信息爆炸式增长,人们面对越来越多的信息无法一一阅读,而文本自动摘要技术可以一定程度上缓解这个问题。摘要就是一篇文章的核心部分信息,文本自动摘要技术分抽取式摘要和生成式摘要,前者是在原文中挑选一定比例的句子拼凑成一个摘要,后者更接近人为的总结式简写一篇文章。目前越来越多的研究者使用深度神经网络来研究生成式摘要技术,但是难度也挺大,效果有限。本文的方法是使用基于启发式规则的算法实现了一个抽取
- Zernike 多项式在圆形、六边形、椭圆形、矩形或环形瞳孔上应用(Matlab代码实现)
稷下科研社
matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述2运行结果3参考文献4Matlab代码实现⛳️赠与读者做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要
- 基于CNN-GRU-Attention混合神经网络的负荷预测方法(Python代码实现)
宇哥预测优化代码学习
神经网络cnngru
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述一、引言二、模型结构三、数据预处理四、模型训练与评估五、实验结果与分析六、结论与展望2运行结果3参考文献4Python代码实现及数据1概述基于CNN-GRU(convolutionalneuralnetworks-gaterecurrentunit)神经网络的电
- 【IMU Kalman滤波器】9轴IMU传感器(加速度计、陀螺仪、磁力计)的卡尔曼滤波器算法研究(Matlab代码实现)
然哥爱编程
算法matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、引言二、9轴IMU传感器原理及误差分析三、卡尔曼滤波器算法四、实验与结果分析五、结论与展望2运行结果3参考文献4Matlab代码、数据⛳️赠与读者做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努
- matlab学习路线
kyle~
matlabmatlab学习信息可视化
阶段1:基础入门(1-2周)目标:熟悉MATLAB界面、基础语法和简单操作。学习内容:环境与界面:了解MATLAB的桌面布局(命令窗口、工作区、编辑器、当前文件夹)。学习如何创建脚本(.m文件)和实时脚本(.mlx文件)。掌握常用快捷键(如Ctrl+R注释、F5运行脚本)。基础语法:变量定义与数据类型(数值、字符、逻辑、矩阵、cell数组、结构体)。矩阵操作(创建、索引、切片、拼接),例如:A=[
- Zernike 多项式在圆形、六边形、椭圆形、矩形或环形瞳孔上应用(Matlab代码实现)
天天程序猿
matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述2运行结果3参考文献4Matlab代码实现⛳️赠与读者做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要
- python神经网络框架有哪些,python调用神经网络模型
小明技术分享
python神经网络深度学习
人工智能Python深度学习库有哪些由于Python的易用性和可扩展性,众多深度学习框架提供了Python接口,其中较为流行的深度学习库如下:第一:CaffeCaffe是一个以表达式、速度和模块化为核心的深度学习框架,具备清晰、可读性高和快速的特性,在视频、图像处理方面应用较多。Caffe中的网络结构与优化都以配置文件形式定义,容易上手,无须通过代码构建网络;网络训练速度快,能够训练大型数据集与S
- 大语言模型原理与工程实践:残差连接与层归一化
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着自然语言处理(NLP)的发展,深度学习在过去几年中取得了令人瞩目的成果。其中,循环神经网络(RNN)和卷积神经网络(CNN)在图像和文本分类、语义角色标注、机器翻译等领域表现出色。然而,这些网络在训练过程中经常遭遇梯度消失和梯度爆炸的问题。为了解决这些问题,我们引入了残差连接(ResidualConnections)和层归一化(BatchNormalization)来改善模型性能。
- 基于matlab的lte组网实验,基于Matlab的TD-LTE链路级仿真平台的建立
weixin_39668282
应用研究数字技术与应用831背景TD-LTE是无线通信领域的一次革新,它采用了许多增强型的技术来提高系统的性能,使其具有更高的复杂性。随着TD-LTE亮相上海世博会之后,TD-LTE-Advanced也被国际电信联盟确定为国际4G标准之一[1]。TD-LTE的飞速发展,离不开仿真对其性能的不断验证。仿真包括链路级仿真和系统级仿真,而链路级仿真又是系统级仿真的基础,因此搭建TD-LTE链路级仿真平台
- MATLAB生成C/A码并计算自相关值
SJTU_YJ
matlabc语言开发语言
坐标上海西南某高校,一门大作业要求我们实现MATLAB生成C/A码并计算自相关值题目要求:用Matlab编写程序,生成一个适合PRN1-32号GPS卫星中任何一个卫星的C/ACode的通用标准函数。长度为1个周期(1ms),包含1023个chip。调用这个通用标准函数,选择其中一颗卫星的C/ACode信号,运算它的自相关值,并生成图形。图形例子见下:事实上,matlab自带了生成C/A码的函数ht
- 基于Matlab的GPS信号仿真
NoABug
matlab开发语言
基于Matlab的GPS信号仿真近年来,GPS技术已经广泛应用于各个领域,特别是定位和导航领域。为了更好地研究和理解GPS信号的特性,进行GPS信号仿真就成为了一项重要的工作。在本文中,我们将介绍如何使用Matlab软件进行GPS信号仿真,并给出相应的源代码。首先,我们需要了解GPS信号的基本结构。GPS信号由L1和L2两个频段的载波信号、P码和C/A码组成。其中,L1频段的载波频率为1575.4
- verilog Matlab GPS C/A码发生器.
today_typ
verilog学习日志开发语言matlab经验分享fpga开发
本文所涉文献资料均为开源免费,参考文献、声明链接等均写在文末。1.C/A码简要介绍GPS卫星信号包括载波信号、测距码和数据码.其中的测码粗码即C/A码(CoarseAcquisitionCode)除了作为粗测码外,还由于其具有码长短,易于捕获的特点而作为GPS卫星信号的捕获码,因此C/A码是GPS信号捕获以及接收机实现的基础。[1]GPS系统中使用了两种伪随机码,一种是时钟速率为10.23MHz用
- MATLAB中extractAfter函数用法
jk_101
Matlabmatlab开发语言
目录语法说明示例选择子字符串后的文本使用模式提取路径后的文件名选择指定位置后的子字符串选择字符向量中位置之后的文本extractAfter函数的用法是提取指定位置后的子字符串。语法newStr=extractAfter(str,pat)newStr=extractAfter(str,pos)说明newStr=extractAfter(str,pat)提取在pat指定的子字符串后开始并以str的最后
- 基于matlab的GPS信号捕获仿真
Simuworld
MATLAB仿真案例matlabGPS信号捕获
目录1.算法概述2.仿真效果3.MATLAB仿真源码1.算法概述全球定位系统gps是一种可以在全球范围内为用户全天候提供实时、连续、高精度的位置、速度和时间信息的卫星导航系统,其主要终端设备是gps接收机。gps信号捕获是gps接收机的关键技术之一,它直接影响着后续对信号的跟踪和定位数据的解算,决定着接收机的性能。现有的gps接收机c/a码捕获方法主要有两种:一种是基于时域的串行搜索捕获法,该方法
- 基于车辆组网通信系统的MATLAB仿真
HackDashX
matlab人工智能开发语言Matlab
基于车辆组网通信系统的MATLAB仿真车辆组网通信系统在现代交通中起着重要的作用,它利用车辆自身的通信能力和网络技术实现车辆之间的信息交流和协作。本文将介绍如何使用MATLAB进行车辆组网通信系统的仿真,并提供相应的源代码。首先,我们需要明确车辆组网通信系统的基本原理。该系统基于车载自组织网络(VehicularAdHocNetwork,VANET),利用无线通信技术和车辆间的直接通信来实现信息传
- 基于MATLAB的GPS信号捕获跟踪:实现与优化
UIEdit
matlab算法人工智能
基于MATLAB的GPS信号捕获跟踪:实现与优化概述:全球定位系统(GPS)已经成为现代导航和定位应用中的重要工具。在GPS接收机中,信号捕获和跟踪是关键步骤,用于从多路复用的GPS信号中提取有用的信息。本文将介绍如何使用MATLAB实现GPS信号的捕获和跟踪,并讨论一些针对性的优化措施。GPS信号捕获:GPS信号具有复杂的结构,包括导航数据、载波信号和码片序列。在信号捕获过程中,我们的目标是找到
- Transformer架构的GPU并行和之前的NLP算法并行有什么不同?
AI大模型学习不迷路
transformer自然语言处理大模型深度学习NLPLLM大语言模型
1.什么是GPU并行计算?GPU并行计算是一种利用图形处理单元(GPU)进行大规模并行数据处理的技术。与传统的中央处理单元(CPU)相比,GPU拥有更多的核心,能够同时处理数千个线程,这使得GPU在处理高度并行的任务时表现出色。在深度学习中,GPU并行计算被广泛应用于训练神经网络,加速模型训练过程。在2017年之前,自然语言处理(NLP)领域的研究者们通常会从头开始训练模型,那时能够利用GPU进行
- 无穷大功率电源matlab仿真,MATLAB-Simulink系统建模与仿真-实验报告
知书达
无穷大功率电源matlab仿真
MATLAB/Simulink电力系统建模与仿真实验报告姓名:******专业:电气工程及其自动化班级:*******************学号:*******************实验一无穷大功率电源供电系统三相短路仿真1.1无穷大功率电源供电系统仿真模型构建运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块:(1)无穷大功率电源模块(Three-phaseso
- 机器学习Day01
酒脑猫
机器学习人工智能
人工智能三大概念及其关系人工智能(AI):使用计算机来模拟或者代替人类机器学习(ML):机器自动学习,并不只由人定义规则编程深度学习(DL):大脑仿生,模拟人大脑神经网络,设计一层层神经元模拟事物机器学习是实现人工智能的一种途径,深度学习是机器学习的一种更加深入的方法。机器学习学习方法基于规则的学习:程序员根据自己经验定义规则基于模型的学习:由于某些事物,问题无法可以定义明确的规则,如:图片,语音
- 【DL】神经网络与机器学习基础知识介绍(一)
MengWoods
深度学习机器学习神经网络人工智能
原博客:https://mengwoods.github.io/post/dl/009-dl-fundamental/文章目录基本通用概念梯度下降算法数据工程训练技术偏差与方差防止过拟合评估指标决策树基本通用概念机器学习的类型:监督学习(SupervisedLearning):分类,回归无监督学习(UnsupervisedLearning):聚类,降维强化学习(ReinforcementLearn
- mayavi实例
鄧寜
matlabpython开发语言
Mayavi是一个用于三维可视化的Python库。它可以用于绘制三维图形、曲面、等值线和点云数据。它使用VTK后端进行绘图,并提供了一个类似于MATLAB的界面,使用户能够轻松地创建复杂的三维图形。示例:frommayaviimportmlab#生成等值线数据x,y,z=mlab.test_plot3d()#使用mlab.contour3d绘制等值线mlab.contour3d(x,y,z)#显示
- matlab下载安装教程
chengxuyuan66666
matlab
MATLAB的下载和安装过程相对直接,但需要注意选择与您的操作系统兼容的版本,并确保拥有有效的许可证密钥(如果是正式版)。以下是一个详细的MATLAB下载和安装教程:一、下载MATLAB访问MATLAB官网:打开浏览器,前往MathWorks官方网站(https://www.mathworks.com)。选择版本:在官网上,导航到下载页面,并选择适合您操作系统的MATLAB版本。常见的版本包括MA
- 基于JavaWeb的原色蛋糕商城的设计与实现
yh1340327157
计算机毕业设计实战案例java-eestrutskafkatomcathibernateintellij-ideaspring
开发环境开发语言:Java框架:springbootJDK版本:JDK1.8服务器:tomcat7数据库:mysql5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包:Maven3.3.9浏览器:谷歌浏览器后台路径地址:localhost:8080/项目名称/admin/dist/index.html前台路径地址:localh
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分