- 第一个问题:AI会威胁人类吗?
释迦呼呼
AI一千问人工智能
第一个问题:AI会威胁人类吗?对于这个问题,我的回答是:AI本身并不会威胁人类,但其是否构成威胁取决于人类如何设计、使用和监管它。下面我将从几个角度详细分析。AI的本质:人类的工具AI(人工智能)是由人类创造的工具,它的行为和决策完全基于人类设计的算法和输入的数据。换句话说,AI没有自己的意识、意图或独立的目标,因此它本身并不具备威胁人类的动机或能力。它的作用是由开发者、使用者和管理者决定的。AI
- 在低功耗MCU上实现人工智能和机器学习
电子科技圈
SiliconLabs人工智能机器学习嵌入式硬件经验分享科技物联网mcu
作者:SiliconLabs人工智能(AI)和机器学习(ML)技术不仅正在快速发展,还逐渐被创新性地应用于低功耗的微控制器(MCU)中,从而实现边缘AI/ML解决方案。这些MCU是许多嵌入式系统不可或缺的一部分,凭借其成本效益、高能效以及可靠的性能,现在能够支持AI/ML应用。这种集成化在可穿戴电子产品、智能家居设备和工业自动化等应用领域中,从AI/ML功能中获得的效益尤为显著。具备AI优化功能的
- 《AI与NLP:开启元宇宙社交互动新纪元》
人工智能深度学习
在科技飞速发展的当下,元宇宙正从概念逐步走向现实,成为人们关注的焦点。而在元宇宙诸多令人瞩目的特性中,社交互动体验是其核心魅力之一。人工智能(AI)与自然语言处理(NLP)技术的迅猛发展,为元宇宙社交互动带来了前所未有的变革与提升,深刻地影响着用户在虚拟世界中的社交方式与体验。自然语言交互,打破沟通壁垒在早期的元宇宙雏形中,用户与虚拟环境、其他用户的交互多依赖于简单的指令输入或有限的动作操作,这种
- 函数调用和 Java 与 Spring AI 模型的集成
算法资料吧!
javaspring人工智能
SpringAI是一个功能强大的SpringFramework项目,它为Java开发人员带来了人工智能(AI)功能。通过将AI模型集成到Java应用程序中,SpringAI简化了创建智能应用程序的过程,同时利用了Spring生态系统的稳健性。本文将指导您完成使用SpringAI将AI模型集成到Java应用程序中的步骤,特别关注允许AI模型与外部数据源和服务动态交互的函数调用机制。SpringAIS
- 深入探索Mozilla的DeepSpeech:语音识别的新里程碑
温宝沫Morgan
深入探索Mozilla的DeepSpeech:语音识别的新里程碑项目地址:https://gitcode.com/gh_mirrors/de/DeepSpeech项目简介是一个开源的语音识别引擎,基于深度学习技术,致力于提供准确、可扩展且易于集成的解决方案。该项目的目标是打破现有的语音识别壁垒,使开发者能够轻松构建支持语音的应用,推动人机交互进入新的时代。技术分析基于Baidu的DeepSpeec
- DeepSeek 到底是什么类型的应用,其核心功能是什么?
AndrewHZ
python生活算法深度学习人工智能语言模型deepseek
DeepSeek是一款多用途的人工智能工具,其核心功能基于大模型技术,覆盖内容生成、数据分析、个性化服务及复杂任务处理等多个领域。以下从应用类型和核心功能两方面展开分析:一、DeepSeek的应用类型通用型人工智能助手DeepSeek被设计为跨行业的通用型AI,适用于生活、学习、工作等场景。例如:生活场景:提供旅游推荐(如黔南的景点、美食)、诗歌创作、儿童故事生成等。专业场景:在金融、保险等领域,
- 使用LlamaIndex进行Token计数的实战指南
llzwxh888
自然语言处理人工智能python
在人工智能领域,特别是在自然语言处理(NLP)任务中,理解和跟踪Token的使用情况是非常重要的。这篇文章将介绍如何使用LlamaIndex库来进行Token计数,并提供一些实用的代码示例,以便你在自己的项目中应用这些技术。环境设置首先,我们需要设置回调和服务上下文。通过全局设置,我们可以在不需要每次查询时都传递这些设置的情况下使用它们。importosos.environ["OPENAI_API
- 【深度学习】Adam优化器
九筠
机器学习深度学习人工智能
目录1什么是Adam1.1基本概念1.2Adam的数学理解1.2.1计算一阶矩估计(mean)1.2.2计算二阶矩估计(uncenteredvariance)1.2.3矫正一阶矩估计(mean)和二阶矩估计(uncenteredvariance)的偏差1.2.4更新模型参数1.3Adam的简单理解2Adam优化算法怎么用2.1导入所需的库和模块2.2定义模型和损失函数2.3定义优化器2.4在训练循
- 清华大学第5弹: 《DeepSeek与AI幻觉》 - 清华大学DeepSeek全套资料完整版 - 持续更新 - PDF免费下载
jiswordsman
人工智能pdf
由清华大学新闻与传播学院与人工智能学院双聘教授沈阳教授团队倾力打造的《DeepSeek与AI幻觉》,全面呈现,共计38页。《DeepSeek与AI幻觉》报告探讨了AI幻觉的成因、评测方法及其影响,并以DeepSeek模型为例,分析数据偏差、知识固化等问题如何导致幻觉现象。报告还提出缓解策略,如联网搜索、提示词优化,并探讨AI幻觉在科学创新和艺术创作中的潜在价值。点击链接免费下载《DeepSeek与
- 人工智能基础:从零开始讲解AI的基本概念、发展历程及其核心技术
一碗黄焖鸡三碗米饭
人工智能前沿与实践人工智能架构机器学习深度学习
人工智能基础:从零开始讲解AI的基本概念、发展历程及其核心技术人工智能(AI)正以前所未有的速度发展,渗透到各行各业,改变着我们的生活方式和工作模式。从自动驾驶到语音助手,从推荐系统到智能制造,人工智能技术无处不在。然而,许多人对于人工智能的了解仍停留在表面,甚至对其中的一些核心概念感到陌生。本文将围绕人工智能的基础概念、发展历程及核心技术进行详细讲解。我们将通过代码示例和表格对比,帮助大家深入理
- 人工智能时代,程序员如何保持核心竞争力?
大道归简
人工智能AIGC
一、AI辅助编程对程序员工作的影响AI辅助编程工具正在迅速改变程序员的日常工作实践。这些工具提供了强大的功能,如智能代码补全、自动代码生成和代码重构等,极大地提高了编程效率。例如,GitHubCopilot可以根据上下文自动生成代码片段,而Tabnine则能提供智能代码补全建议。这些工具不仅加快了编码速度,还能帮助程序员减少常见错误,提高代码质量。然而,过度依赖AI工具也可能带来一些潜在风险:编程
- 数字人源码源头搭建技术全攻略,支持OEM
余18538162800)
python
引言在人工智能与多媒体技术迅猛发展的当下,数字人已从概念构想逐步走进现实应用,广泛渗透于娱乐、教育、医疗、金融等多个领域。搭建数字人源码系统是一项综合性的技术工程,融合了计算机图形学、人工智能、语音处理等多学科前沿技术。本文将深入剖析数字人源码搭建的技术细节,为开发者提供详尽的技术开发指南。技术选型与架构设计图形渲染技术实时渲染引擎:Unity:作为一款跨平台的实时渲染引擎,Unity在数字人开发
- 数据飞轮:激活数据中台的数据驱动引擎
Earth explosion
kafka
在数字化转型的浪潮中,企业面临着如何有效利用海量数据驱动业务增长的挑战。数据中台,作为企业数据集成和分析的关键基础设施,往往未能充分发挥其潜力,成为数据的沉睡之地。数据飞轮作为一种新兴的数据驱动模型,提供了唤醒数据中台并实现数据流动的新思路。本文将探讨数据飞轮的概念、构建方法以及如何通过数据飞轮实现数据中台的活力焕发。随着人工智能和大数据技术的发展,企业拥有了收集和处理前所未有的数据量的能力。然而
- 大语言模型基础
MatrixSparse
大模型人工智能语言模型自然语言处理人工智能
简介AI大模型是“人工智能预训练大模型”的简称,包含了“预训练”和“大模型”两层含义,二者结合产生了一种新的人工智能模式,即模型在大规模数据集上完成了预训练后无需微调,或仅需要少量数据的微调,就能直接支撑各类应用。AI大模型主要分为三类:大语言模型、CV大模型和多模态大模型,我将分别介绍它们的背景知识、关键技术、演进路线和挑战。什么是大语言模型大语言模型(LargeLanguageModel,LL
- 一文介绍DeepSeek的模型蒸馏和模型量化技术
江湖人称麻花滕
人工智能架构chatgpt开源语言模型
1关于DeepSeek最近大火的DeepSeek给中国AI市场带来了很多热度,在DeepSeek的官网,也反复提及“模型蒸馏”技术。大模型的模型蒸馏和模型量化是当前人工智能领域中重要的研究方向,它们对于提高模型的部署效率、降低资源消耗具有重要意义。2模型蒸馏(ModelDistillation)2.1定义与原理模型蒸馏是一种知识迁移的方法旨在将知识从一个大型的教师模型(TeacherModel)转
- AI训练师团队管理运营思路
姚瑞南
意图识别训练流程及规范智能客服AI项目管理人工智能AIGC语言模型自然语言处理
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)目录目录大纲1.团队定位2.业务概览3.团队分工4.运营全流程5.衡量目标一、团队定位二、业务概览三、业务分配四、运营流程及步骤1.运营流程2.运营步骤五、指标观测目录大纲1.团队定
- DeepSeek赋能智能交通流量预测与优化:告别拥堵的未来
人工智能专属驿站
计算机视觉人工智能
DeepSeek赋能智能交通流量预测与优化:告别拥堵的未来在城市化快速发展的今天,交通拥堵已成为全球大中城市的“通病”,严重影响人们的出行效率和生活质量。然而,随着人工智能技术的不断进步,特别是DeepSeek这样的先进模型的出现,交通流量预测与优化迎来了新的曙光。DeepSeek凭借其强大的时空预测模型和强化学习框架,为交通流量预测和信号优化提供了全新的解决方案。它能够整合多源数据,包括地磁传感
- AIGC训练效率与模型优化的深入探讨
DARLING Zero two♡
话题AIGC
文章目录1.AIGC概述2.AIGC模型训练效率的重要性3.模型优化的概念与目标4.模型优化策略4.1学习率调节4.2模型架构选择4.3数据预处理与增强4.4正则化技术4.5量化与剪枝5.代码示例6.结论人工智能领域的发展,人工智能生成内容(AIGC)越来越受关注。AIGC能够通过学习大量数据生成高质量内容,但训练效率和模型优化仍然是关键的研究方向。本博客将深入探AIGC的训练效率,与模型优化的相
- 计算机视觉与深度学习实战:以Python为工具,基于帧间差法进行视频目标检测
好知识传播者
Python实例开发实战计算机视觉深度学习python基于帧间差法进行视频目标检测
一、引言随着科技的飞速发展,计算机视觉和深度学习已成为当今科技领域的热门话题。它们不仅在科研领域取得了显著的成果,而且在安防监控、智能交通、医疗影像分析、工业自动化等领域得到了广泛的应用。本文旨在探讨计算机视觉与深度学习的实战应用,特别是以Python为工具,基于帧间差法进行视频目标检测的方法。二、计算机视觉概述计算机视觉是一门研究如何使机器从数字图像或视频中提取、分析和理解有用信息的学科。它涉及
- 【零基础保姆级教程】DeepSeek小白速成指南:从入门到实战,1小时掌握AI神器!
emmm形成中
人工智能python
【零基础保姆级教程】DeepSeek小白速成指南:从入门到实战,1小时掌握AI神器!date:2025-02-2220:00:00tags:人工智能新手教程效率工具categories:技术实战前言你是否羡慕别人用AI工具高效产出文案、代码甚至数据分析报告?是否因英语不好或技术门槛而对DeepSeek望而却步?本文将手把手教你零代码基础1小时玩转DeepSeek,覆盖注册、提问技巧、API配置到实
- 2025年普通人转向人工智能运维(AIOps)学习建议(附最新技术实践与资源)
emmm形成中
人工智能运维学习
2025年普通人转向人工智能运维(AIOps)学习建议(附最新技术实践与资源)一、学习路径规划:分阶段掌握核心技能1.基础能力构建(3-6个月)传统运维技能Linux与Shell脚本:掌握Linux系统管理、性能调优及常用命令(如awk、sed处理日志)。监控工具:学习Prometheus、Zabbix等工具,理解指标采集与告警规则配置。自动化运维:熟悉Ansible、Jenkins等工具,编写自
- 基于深度学习的入侵检测系统设计与实现
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
基于深度学习的入侵检测系统设计与实现关键词:深度学习、入侵检测、网络安全、机器学习、神经网络、特征提取、实时分析文章目录基于深度学习的入侵检测系统设计与实现1.背景介绍1.1网络安全的重要性1.2传统入侵检测系统的局限性1.3深度学习在安全领域的应用前景2.核心概念与联系2.1入侵检测系统(IDS)概述2.2深度学习基础2.3深度学习在入侵检测中的应用3.核心算法原理&具体操作步骤3.1算法原理概
- 【Llama3:8b】手把手教你如何在本地部署 自己的 LLM大模型
AI大模型..
langchainllama人工智能大模型LLMai大模型大模型部署
一、为什么需要本地部署属于自己的大模型?趋势:我们正处于AI人工智能时代,各行各业的公司和产品都在向AI靠拢。打造垂直领域的AI模型将成为每个公司未来的发展趋势。数据安全:在无法掌握核心算法的情况下,许多公司选择使用大公司的成熟方案。然而,这涉及到数据安全的问题。训练垂直定制化的大模型需要大量数据,而数据是公司的核心资产和基石。没有公司愿意将这些关键数据上传到外部服务器,这是公司的命脉所在。本地部
- 【大模型应用开发 动手做AI Agent】大模型就是Agent的大脑
杭州大厂Java程序媛
DeepSeekR1&AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能
【大模型应用开发动手做AIAgent】大模型就是Agent的大脑关键词:大模型,AIAgent,智能决策,任务导向,知识表示,交互式学习,混合智能1.背景介绍1.1问题由来随着人工智能(AI)技术的发展,尤其是深度学习和自然语言处理(NLP)技术的进步,越来越多的应用场景开始采用AI模型来解决复杂的决策问题。然而,当前的AI模型大多依赖于大模型的预训练知识,这些模型虽然在通用知识获取上取得了显著进
- 2025最新Python机器视觉实战:基于OpenCV与深度学习的多功能工业视觉检测系统(附完整代码)
emmm形成中
pythonopencv深度学习
2025最新Python机器视觉实战:基于OpenCV与深度学习的多功能工业视觉检测系统(附完整代码)摘要:本文基于OpenCV与深度学习模型,实现一个多功能工业视觉检测系统,包含缺陷检测、尺寸测量、颜色识别、OCR文本识别、目标分类与数据可视化等功能。代码兼容Python3.7+,功能丰富且经过稳定性测试,适合工业场景应用。所有依赖库均为最新版本,确保运行流畅。一、环境准备安装依赖库pipins
- 独立开发者灵感日报:简化您生活的 IT 聊天机器人
前端后花园
前端热门开源项目生活机器人百度人工智能自动化AI编程
独立开发者产品日刊,每日汇集ProductHunt热榜产品介绍,⚡️1句Slogan榨干产品灵魂,⚡️3秒get全球独立开发者的爆款灵感。关注小前,每日捕获全球产品灵感。这是日刊第28篇文章。FleetAICopilotSlogan:简化您生活的IT聊天机器人标签:人工智能·机器人·科技为什么值得推荐:FleetAICopilot是您新的AI驱动的IT助手,可简化设备管理并转换日常IT任务。它通过
- AI DMP 数据基建:如何利用数据提升营销效率
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
AIDMP数据基建:如何利用数据提升营销效率关键词:AI、DMP、数据基建、营销效率、数据驱动、用户画像、精准投放、数据安全摘要:本文深入探讨了AI驱动的DMP(数据管理平台)在现代营销中的关键作用。文章详细阐述了AIDMP数据基建的核心概念、技术原理和实施步骤,包括数据收集、整合、分析和应用等方面。通过结合人工智能技术,DMP能够更精准地构建用户画像,优化营销策略,提高广告投放效率。文章还探讨了
- 航电系统智能诊断深度实战:从硬件集成到DO-178C认证全流程解析(附工业级代码)
Coderabo
DeepSeekR1模型企业级应用航电系统智能诊断
航电系统智能故障诊断全栈技术解析——基于深度学习的工业级实现指南一、航电系统故障诊断技术体系1.1典型故障模式与特征classAvionicFault:FAULT_TYPES={101:'总线通信故障',102:'传感器漂移',
- 直播美颜SDK的底层技术解析:图像处理与深度学习的结合
美狐美颜sdk
美颜API直播美颜SDK美颜SDK图像处理深度学习人工智能美颜API视频美颜SDK直播美颜SDK滤镜sdk
直播美颜SDK通过高效的图像处理技术和深度学习算法,使得用户在直播过程中可以获得更为自然、精致的美颜效果。本文将深入解析直播美颜SDK的底层技术,探讨图像处理与深度学习如何在这一领域实现完美结合,提升用户体验并推动行业创新。一、直播美颜SDK的基本概述图像处理是直播美颜SDK的核心技术之一,它主要负责对图像进行预处理、特征提取以及美颜效果的实时合成。在直播美颜SDK中,图像处理技术包含多个关键步骤
- Neat Vision:深度学习NLP注意力机制可视化工具教程
纪亚钧
NeatVision:深度学习NLP注意力机制可视化工具教程neat-visionNeat(NeuralAttention)Vision,isavisualizationtoolfortheattentionmechanismsofdeep-learningmodelsforNaturalLanguageProcessing(NLP)tasks.(framework-agnostic)项目地址:h
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag