显著性目标检测文章和结果记录

显著性目标检测

1 每个数据库单独训练

方法 ECSSD PASCAL-S DUTS-test HKU-IS SOD DUT-OMRON 时间 期刊 备注
MAE MAE MAE MAE MAE MAE
SRNet-V[1] 0.938 0.045 0.868 0.078 0.869 0.047 0.929 0.038 0.851 0.084 0.802 0.067 2019 arxiv 以VGG为骨架
SRNet-R [1] 0.944 0.04 0.883 0.075 0.878 0.045 0.930 0.036 0.859 0.076 0.830 0.060 以ResNet为骨架

2 用MSRA10K或者DUTS -TR作为训练集,其他数据库作为测试集

方法 ECSSD PASCAL-S DUTS-test HKU-IS SOD DUT-OMRON 时间 期刊 备注
MAE MAE MAE MAE MAE MAE
SFCN[2] 0.911 0.0421 0.813 0.0732 0.742 0.0622 0.906 0.0357 0.822 0.1012 0.718 0.0643 2019 arxiv
RDS-1152[3] 0.953 0.036 0.874 0.08 0.867 0.044 0.942 0.028 0.817 0.083 0.837 0.05 2019 arxiv 使用目标检测的数据集进行辅助
DGRL[4] 0.903 0.045 - - 0.768 0.051 0.882 0.037 - - 0.709 0.063 2018 cvpr2018
PAGRN[5] 0.891 0.064 0.803 0.092 0.788 0.055 0.886 0.048 - - 0.711 0.072 2018 cvpr2018 353X353的输出
PiCANet[6] 0.931 0.047 0.88 0.0781 0.851 0.054 0.8921 0.042 0.855 0.108 0.794 0.068 2018 cvpr2018

多模态显著性目标检测

RGB-D显著性目标检测

模型 NJUD NLRP STEREO DES 发表时间 期刊 备注
MAE MAE MAE MAE
AF[7] 0.899 0.0534 0.899 0.0327 0.904 0.0462 -- -- 2019 arxiv
MV-CNN[8] --- --- --- --- --- --- --- --- 2018 IEEE

参考文献


  1. Deep Reasoning with Multi-scale Context for Salient Object Detection,Zun Li,2019,http://arxiv.org/abs/1901.08362 ↩ ↩

  2. Salient Object Detection with Lossless Feature Reflection and Weighted Structural Loss , Pingping Zhang, https://arxiv.org/abs/1901.06823 ↩

  3. Richer and Deeper Supervision Network for Salient Object Detection, Sen Jia,Neil D. B. Bruce,https://www.jianshu.com/go-wild?ac=2&url=https://arxiv.org/abs/1901.02425 ↩

  4. Detect Globally, Refine Locally: A Novel Approach to Saliency Detection, Tiantian Wang,链接:https://www.crcv.ucf.edu/papers/cvpr2018/camera_ready.pdf, 代码:https://github.com/TiantianWang/CVPR18_detect_globally_refine_locally ↩

  5. Progressive Attention Guided Recurrent Network for Salient Object Detection,Xiaoning Zhang,链接:http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_Progressive_Attention_Guided_CVPR_2018_paper.html, 代码:https://github.com/zhangxiaoning666/PAGR ↩

  6. PiCANet: Learning Pixel-wise Contextual Attention for Saliency Detection,Nian Liu,链接:http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_PiCANet_Learning_Pixel-Wise_CVPR_2018_paper.pdf
    , 代码:https://github.com/nian-liu/PiCANet ↩

  7. Adaptive Fusion for RGB-D Salient Object Detection Ningning, Ningning Wang, Xiaojin Gong, 2019, https://arxiv.org/abs/1901.01369 ↩

  8. CNNs-Based RGB-D Saliency Detection via Cross-View Transfer and Multiview Fusion,Junwei Han,2018,https://ieeexplore.ieee.org/document/8091125 ↩

你可能感兴趣的:(显著性目标检测文章和结果记录)