当材料处于弹性状态时,材料的应变和应力呈现线性关系。比如一根杆受拉伸力F作用,轴向会有伸长,同时横向会缩小,如下图所示。
那么有
σ x = F A , ε x = Δ l (36) \sigma_{x}=\frac{F}{A},\varepsilon_{x}=\frac{\Delta}{l}\tag{36} σx=AF,εx=lΔ(36)
材料的应变和应力呈现线性关系,那么
ε x = σ x E (37) \varepsilon_{x}=\frac{\sigma_{x}}{E}\tag{37} εx=Eσx(37)
同时,由于泊松比的存在,此时横向的应变为
ε y = − ν ε x (38) \varepsilon_{y}= -\nu\varepsilon_{x}\tag{38} εy=−νεx(38)
上述为一维情况,三维应力情况可以通过分解成多个一维情况的叠加(由于材料处于弹性范围,因此叠加原理适用)。
还是以六面体为例,当各个面仅考虑正应力情况时,可以分解成三个方向的一维情况(正应力不产生剪切应变,剪切应力不产生正应变)。
对于情况(1),有
ε x x = σ x x E ε y y = − ν ε x x = − ν σ x x E ε z z = − ν ε x x = − ν σ x x E (39) \varepsilon_{xx} =\frac{\sigma_{xx}}{E } \\ \varepsilon_{yy} = -\nu\varepsilon_{xx}=-\nu\frac{\sigma_{xx}}{E }\\ \varepsilon_{zz} = -\nu\varepsilon_{xx}=-\nu\frac{\sigma_{xx}}{E }\tag{39} εxx=Eσxxεyy=−νεxx=−νEσxxεzz=−νεxx=−νEσxx(39)
对于情况(2),有
ε y y = σ y y E ε x x = − ν ε y y = − ν σ y y E ε z z = − ν ε y y = − ν σ y y E (40) \varepsilon_{yy} =\frac{\sigma_{yy}}{E } \\ \varepsilon_{xx} = -\nu\varepsilon_{yy}= -\nu\frac{\sigma_{yy}}{E } \\ \varepsilon_{zz} = -\nu\varepsilon_{yy}= -\nu\frac{\sigma_{yy}}{E } \tag{40} εyy=Eσyyεxx=−νεyy=−νEσyyεzz=−νεyy=−νEσyy(40)
对于情况(3),有
ε z z = σ z z E ε x x = − ν ε z z = − ν σ z z E ε y y = − ν ε z z = − ν σ z z E (41) \varepsilon_{zz} =\frac{\sigma_{zz}}{E } \\ \varepsilon_{xx} = -\nu\varepsilon_{zz}=-\nu\frac{\sigma_{zz}}{E } \\ \varepsilon_{yy} = -\nu\varepsilon_{zz}=-\nu\frac{\sigma_{zz}}{E } \tag{41} εzz=Eσzzεxx=−νεzz=−νEσzzεyy=−νεzz=−νEσzz(41)
将三种情况叠加,那么有
ε x x = σ x x E − ν σ y y E − ν σ z z E ε y y = σ y y E − ν σ x x E − ν σ z z E ε z z = σ z z E − ν σ x x E − ν σ y y E (42) \begin{aligned} \varepsilon_{xx} =\frac{\sigma_{xx}}{E }-\nu\frac{\sigma_{yy}}{E }-\nu\frac{\sigma_{zz}}{E } \\ \varepsilon_{yy} = \frac{\sigma_{yy}}{E }-\nu\frac{\sigma_{xx}}{E }-\nu\frac{\sigma_{zz}}{E } \\ \varepsilon_{zz} =\frac{\sigma_{zz}}{E }-\nu\frac{\sigma_{xx}}{E }-\nu\frac{\sigma_{yy}}{E } \\ \end{aligned}\tag{42} εxx=Eσxx−νEσyy−νEσzzεyy=Eσyy−νEσxx−νEσzzεzz=Eσzz−νEσxx−νEσyy(42)
同理,可将剪切应力分为三种单独剪切应力情况的叠加,并有如下式。
γ x y = τ x y G γ y z = τ y z G γ x z = τ x z G (43) \begin{aligned} \gamma_{xy} =\frac{\tau_{xy}}{G } \\ \gamma_{yz} = \frac{\tau_{yz}}{G } \\ \gamma_{xz} =\frac{\tau_{xz}}{G } \\ \end{aligned}\tag{43} γxy=Gτxyγyz=Gτyzγxz=Gτxz(43)
上式就成为广义胡克定律。
将式(42)进行一定的变换,和式(43)一并如下
ε x x = 1 + ν E σ x x − ν E ( σ x x + σ y y + σ z z ) = σ x x 2 G − 3 ν E σ m ε y y = 1 + ν E σ y y − ν E ( σ x x + σ y y + σ z z ) = σ y y 2 G − 3 ν E σ m ε z z = 1 + ν E σ z z − ν E ( σ x x + σ y y + σ z z ) = σ z z 2 G − 3 ν E σ m ε x y = 1 2 γ x y = τ x y 2 G ε y z = 1 2 γ y z = τ y z 2 G ε x z = 1 2 γ x z = τ x z 2 G (44) \begin{aligned} \varepsilon_{xx} =\frac{1+\nu}{E }\sigma_{xx}-\frac{\nu}{E }(\sigma_{xx}+\sigma_{yy}+\sigma_{zz})=\frac{\sigma_{xx}}{2G}- \frac{3\nu}{E }\sigma_{m}\\ \varepsilon_{yy} =\frac{1+\nu}{E }\sigma_{yy}-\frac{\nu}{E }(\sigma_{xx}+\sigma_{yy}+\sigma_{zz})=\frac{\sigma_{yy}}{2G}- \frac{3\nu}{E }\sigma_{m} \\ \varepsilon_{zz} =\frac{1+\nu}{E }\sigma_{zz}-\frac{\nu}{E }(\sigma_{xx}+\sigma_{yy}+\sigma_{zz})=\frac{\sigma_{zz}}{2G}- \frac{3\nu}{E }\sigma_{m}\\ \varepsilon_{xy} =\frac{1}{2}\gamma_{xy}=\frac{\tau_{xy}}{2G } \\ \varepsilon_{yz} =\frac{1}{2}\gamma_{yz}= \frac{\tau_{yz}}{2G } \\ \varepsilon_{xz} =\frac{1}{2}\gamma_{xz}=\frac{\tau_{xz}}{2G } \\ \end{aligned}\tag{44} εxx=E1+νσxx−Eν(σxx+σyy+σzz)=2Gσxx−E3νσmεyy=E1+νσyy−Eν(σxx+σyy+σzz)=2Gσyy−E3νσmεzz=E1+νσzz−Eν(σxx+σyy+σzz)=2Gσzz−E3νσmεxy=21γxy=2Gτxyεyz=21γyz=2Gτyzεxz=21γxz=2Gτxz(44)
按照张量标记,上式可以写成以下形式
ε i j = σ i j 2 G − 3 ν E σ m δ i j (45) \varepsilon_{ij} = \frac{\sigma_{ij}}{2G }-\frac{3\nu}{E }\sigma_{m}\delta_{ij}\tag{45} εij=2Gσij−E3νσmδij(45)
那么有下式成立
ε i i = σ i i 2 G − 3 ν E σ m δ i i = 3 σ m 2 G − 3 ν E σ m ⋅ 3 = 1 + ν − 3 ν E ⋅ 3 σ m (46) \varepsilon_{ii} = \frac{\sigma_{ii}}{2G }-\frac{3\nu}{E }\sigma_{m}\delta_{ii}=\frac{3\sigma_{m}}{2G }-\frac{3\nu}{E }\sigma_{m}\cdot3=\frac{1+\nu-3\nu}{E}\cdot 3\sigma_{m}\tag{46} εii=2Gσii−E3νσmδii=2G3σm−E3νσm⋅3=E1+ν−3ν⋅3σm(46)
这里的 ε i i \varepsilon_{ii} εii只反映在正应力作用下,六面体体积变化量,即体现的是体积应变,不失一般性,假设无剪切应变存在,那么六面体各边相互垂直,三个边长分别为 a 1 、 a 2 、 a 3 a_{1}、a_{2}、a_{3} a1、a2、a3,那么体积应变为
Θ = a 1 ( 1 + ε 1 ) a 2 ( 1 + ε 2 ) a 3 ( 1 + ε 3 ) − a 1 a 2 a 3 a 1 a 2 a 3 = a 1 a 2 a 3 + a 1 a 2 a 3 ( ε 1 + ε 2 + ε 3 + ε 1 ε 2 + ε 1 ε 3 + ε 2 ε 3 + ε 1 ε 2 ε 3 ) − a 1 a 2 a 3 a 1 a 2 a 3 = ε 1 + ε 2 + ε 3 + ε 1 ε 2 + ε 1 ε 3 + ε 2 ε 3 + ε 1 ε 2 ε 3 ≈ ε 1 + ε 2 + ε 3 (47) \begin{aligned} \Theta&=\frac{a_{1}(1+\varepsilon_1)a_{2}(1+\varepsilon_2)a_{3}(1+\varepsilon_3)-a_{1}a_{2}a_{3}}{a_{1}a_{2}a_{3}}\\ &=\frac{a_{1}a_{2}a_{3}+a_{1}a_{2}a_{3}(\varepsilon_1+\varepsilon_2+\varepsilon_3+\varepsilon_1\varepsilon_2+\varepsilon_1\varepsilon_3+\varepsilon_2\varepsilon_3+\varepsilon_1\varepsilon_2\varepsilon_3)-a_{1}a_{2}a_{3}}{a_{1}a_{2}a_{3}}\\ &=\varepsilon_1+\varepsilon_2+\varepsilon_3+\varepsilon_1\varepsilon_2+\varepsilon_1\varepsilon_3+\varepsilon_2\varepsilon_3+\varepsilon_1\varepsilon_2\varepsilon_3\\ &\approx\varepsilon_1+\varepsilon_2+\varepsilon_3 \end{aligned}\tag{47} Θ=a1a2a3a1(1+ε1)a2(1+ε2)a3(1+ε3)−a1a2a3=a1a2a3a1a2a3+a1a2a3(ε1+ε2+ε3+ε1ε2+ε1ε3+ε2ε3+ε1ε2ε3)−a1a2a3=ε1+ε2+ε3+ε1ε2+ε1ε3+ε2ε3+ε1ε2ε3≈ε1+ε2+ε3(47)
那么,有
σ m = E 3 ( 1 − 2 ν ) ⋅ Θ = K ⋅ Θ (48) \sigma_{m} = \frac{E}{3(1-2\nu)}\cdot \Theta=K\cdot \Theta\tag{48} σm=3(1−2ν)E⋅Θ=K⋅Θ(48)
这里K称为体积弹性模量,当然 Θ = 3 ε m \Theta=3\varepsilon_{m} Θ=3εm,代入,有
σ m = E 1 − 2 ν ⋅ ε m (49) \sigma_{m} = \frac{E}{1-2\nu}\cdot \varepsilon_{m}\tag{49} σm=1−2νE⋅εm(49)
应变偏张量具有以下形式
e i j = ε i j − ε m δ i j = σ i j 2 G − 3 ν E σ m δ i j − ε m δ i j = s i j + σ m δ i j 2 G − 3 ν E σ m δ i j − ε m δ i j = s i j 2 G + σ m δ i j 2 G − 3 ν E σ m δ i j − ε m δ i j = s i j 2 G + 1 + ν E σ m δ i j − 3 ν E σ m δ i j − ε m δ i j = s i j 2 G + 1 − 2 ν E σ m δ i j − ε m δ i j = s i j 2 G (50) \begin{aligned} e_{ij} &= \varepsilon_{ij}-\varepsilon_{m}\delta_{ij}\\ &=\frac{\sigma_{ij}}{2G }-\frac{3\nu}{E }\sigma_{m}\delta_{ij}-\varepsilon_{m}\delta_{ij}\\ &=\frac{s_{ij}+\sigma_{m}\delta_{ij}}{2G }-\frac{3\nu}{E }\sigma_{m}\delta_{ij}-\varepsilon_{m}\delta_{ij}\\ &=\frac{s_{ij}}{2G }+\frac{\sigma_{m}\delta_{ij}}{2G }-\frac{3\nu}{E }\sigma_{m}\delta_{ij}-\varepsilon_{m}\delta_{ij}\\ &=\frac{s_{ij}}{2G }+\frac{1+\nu}{E }\sigma_{m}\delta_{ij}-\frac{3\nu}{E }\sigma_{m}\delta_{ij}-\varepsilon_{m}\delta_{ij}\\ &=\frac{s_{ij}}{2G }+\frac{1-2\nu}{E }\sigma_{m}\delta_{ij}-\varepsilon_{m}\delta_{ij}\\ &=\frac{s_{ij}}{2G } \end{aligned}\tag{50} eij=εij−εmδij=2Gσij−E3νσmδij−εmδij=2Gsij+σmδij−E3νσmδij−εmδij=2Gsij+2Gσmδij−E3νσmδij−εmδij=2Gsij+E1+νσmδij−E3νσmδij−εmδij=2Gsij+E1−2νσmδij−εmδij=2Gsij(50)
式(45)为应力表示应变形式的广义胡克定律,变换可得应变表示应力的形式。
σ i j = 2 G ε i j + 2 G 3 ν E σ m δ i j = 2 G ε i j + E 1 + ν ν E E 1 − 2 ν ⋅ 3 ε m δ i j = 2 G ε i j + E ν ( 1 + ν ) ( 1 − 2 ν ) ⋅ 3 ε m δ i j = 2 G ε i j + λ Θ δ i j (51) \begin{aligned} \sigma_{ij}&=2G\varepsilon_{ij}+2G\frac{3\nu}{E }\sigma_{m}\delta_{ij}\\ &=2G\varepsilon_{ij}+\frac{E}{1+\nu }\frac{\nu}{E }\frac{E}{1-2\nu}\cdot3\varepsilon_{m}\delta_{ij}\\ &=2G\varepsilon_{ij}+\frac{E\nu}{(1+\nu )(1-2\nu)}\cdot3\varepsilon_{m}\delta_{ij}\\ &=2G\varepsilon_{ij}+\lambda \Theta\delta_{ij} \end{aligned}\tag{51} σij=2Gεij+2GE3νσmδij=2Gεij+1+νEEν1−2νE⋅3εmδij=2Gεij+(1+ν)(1−2ν)Eν⋅3εmδij=2Gεij+λΘδij(51)
其中 λ \lambda λ成为拉梅常数。