【动态规划】【字符串】【C++算法】940. 不同的子序列 II

作者推荐

【动态规划】【广度优先搜索】【状态压缩】847 访问所有节点的最短路径

本文涉及知识点

动态规划汇总

LeetCode940. 不同的子序列 II

给定一个字符串 s,计算 s 的 不同非空子序列 的个数。因为结果可能很大,所以返回答案需要对 10^9 + 7 取余 。
字符串的 子序列 是经由原字符串删除一些(也可能不删除)字符但不改变剩余字符相对位置的一个新字符串。
例如,“ace” 是 “abcde” 的一个子序列,但 “aec” 不是。
示例 1:
输入:s = “abc”
输出:7
解释:7 个不同的子序列分别是 “a”, “b”, “c”, “ab”, “ac”, “bc”, 以及 “abc”。
示例 2:
输入:s = “aba”
输出:6
解释:6 个不同的子序列分别是 “a”, “b”, “ab”, “ba”, “aa” 以及 “aba”。
示例 3:
输入:s = “aaa”
输出:3
解释:3 个不同的子序列分别是 “a”, “aa” 以及 “aaa”。
参数范围
1 <= s.length <= 2000
s 仅由小写英文字母组成

动态规划

动态规划的状态表示

pre[j]表示前i个字符,以’a’+j 结尾的字符数量。dp[j]表示前i+1个字符,以’a’+j 结尾的字符数量。

动态规划的转移方程

{ 处理 i = 0 26 d p [ j ] + = p r e [ j ] 不选择 s [ i ] ,情况一 d p [ s [ i ] − ′ a ′ ] + = ∑ i = 0 26 p r e [ i ] + 1 , 选择 s [ i ] ,情况二 d p [ s [ i ] − ′ a ′ ] − = p r e [ s [ i ] − ′ a ′ ] 去掉重复 \begin{cases} 处理 \Large^{26}_{i=0} dp[j] += pre[j] & 不选择s[i] ,情况一\\ dp[s[i]-'a']+= \sum\Large_{i=0}^{26}pre[i] +1, & 选择s[i],情况二 \\ dp[s[i]-'a'] -= pre[s[i]-'a'] & 去掉重复 \end{cases} 处理i=026dp[j]+=pre[j]dp[s[i]a]+=i=026pre[i]+1,dp[s[i]a]=pre[s[i]a]不选择s[i],情况一选择s[i],情况二去掉重复
情况一和情况二内部不会重复。结束字符不同不会重复,故只需要考虑结束字符相同。
任意 pre[s[i]-‘a’] 去掉最后一个字符换成s[i],都是合法的情况二。 → \rightarrow 结束字符相同的情况一,全部重复,排除。
选择的情况不能直接2i,否则会有重复。 那个1表示空串。

动态规划的填表顺序

i从1到大

动态规划的初始值

pre[s[0]-‘a’]=1,其它为0。

动态规划的返回值

∑ i = 0 26 \sum\Large_{i=0}^{26} i=026pre[i]

代码

核心代码

template<int MOD = 1000000007>
class C1097Int
{
public:
	C1097Int(long long llData = 0) :m_iData(llData% MOD)
	{

	}
	C1097Int  operator+(const C1097Int& o)const
	{
		return C1097Int(((long long)m_iData + o.m_iData) % MOD);
	}
	C1097Int& operator+=(const C1097Int& o)
	{
		m_iData = ((long long)m_iData + o.m_iData) % MOD;
		return *this;
	}
	C1097Int& operator-=(const C1097Int& o)
	{
		m_iData = (m_iData + MOD - o.m_iData) % MOD;
		return *this;
	}
	C1097Int  operator-(const C1097Int& o)
	{
		return C1097Int((m_iData + MOD - o.m_iData) % MOD);
	}
	C1097Int  operator*(const C1097Int& o)const
	{
		return((long long)m_iData * o.m_iData) % MOD;
	}
	C1097Int& operator*=(const C1097Int& o)
	{
		m_iData = ((long long)m_iData * o.m_iData) % MOD;
		return *this;
	}
	bool operator<(const C1097Int& o)const
	{
		return m_iData < o.m_iData;
	}
	C1097Int pow(long long n)const
	{
		C1097Int iRet = 1, iCur = *this;
		while (n)
		{
			if (n & 1)
			{
				iRet *= iCur;
			}
			iCur *= iCur;
			n >>= 1;
		}
		return iRet;
	}
	C1097Int PowNegative1()const
	{
		return pow(MOD - 2);
	}
	int ToInt()const
	{
		return m_iData;
	}
private:
	int m_iData = 0;;
};

class Solution {
public:
	int distinctSubseqII(string s) {
		vector<C1097Int<>> pre(26);
		pre[s.front() - 'a'] = 1;
		for (int i = 1; i < s.length(); i++)
		{
			vector<C1097Int<>> dp(26);
			C1097Int<> total = std::accumulate(pre.begin(), pre.end(), C1097Int<>(1));
			for (int j = 0; j < 26; j++)
			{
				if ('a' + j != s[i])
				{
					dp[j] += pre[j];
				}
				else
				{
					dp[j] += total;
				}
			}
			pre.swap(dp);
		}
		return std::accumulate(pre.begin(), pre.end(), C1097Int<>()).ToInt();
	}
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
	assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}

}

int main()
{	
	string s;
	{
		Solution sln;
		s = "abc";
		auto res = sln.distinctSubseqII(s);
		Assert(res, 7);
	}
	{
		Solution sln;
		s = "aba";
		auto res = sln.distinctSubseqII(s);
		Assert(res, 6);
	}
	{
		Solution sln;
		s = "aaa";
		auto res = sln.distinctSubseqII(s);
		Assert(res, 3);
	}
	{
		Solution sln;
		s = "adddddddddddddddddddddddddd";
		auto res = sln.distinctSubseqII(s);
		Assert(res, 53);
	}
	{
		Solution sln;
		s = "ddddddddcdddddddfdddddddddedddddddddddddddd";
		auto res = sln.distinctSubseqII(s);
		Assert(res, 20611);
	}
	{
		Solution sln;
		s = "abcdefghijklmnopqrstuvwxyzzzzaaa";
		auto res = sln.distinctSubseqII(s);
		Assert(res, 671088636);
	}
	


}

2023年1月

class C1097Int
{
public:
C1097Int(int iData = 0) :m_iData(iData)
{

 }
 C1097Int  operator+(const C1097Int& o)const
 {
	 return C1097Int((m_iData + o.m_iData) % s_iMod);
 }
 C1097Int&  operator+=(const C1097Int& o)
 {
	 m_iData = (m_iData + o.m_iData) % s_iMod;
	 return *this;
 }
 C1097Int  operator*(const C1097Int& o)const
 {
	 return((long long)m_iData *o.m_iData) % s_iMod;
 }
 C1097Int&  operator*=(const C1097Int& o)
 {
	m_iData =((long long)m_iData *o.m_iData) % s_iMod;
	 return *this;
 }
 int ToInt()const
 {
	 return m_iData;
 }

private:
int m_iData = 0;;
static const int s_iMod = 1000000007;
};

int operator+(int iData, const C1097Int& int1097)
{
int iRet = int1097.operator+(C1097Int(iData)).ToInt();
return iRet;
}

int& operator+=(int& iData, const C1097Int& int1097)
{
iData = int1097.operator+(C1097Int(iData)).ToInt();
return iData;
}

class Solution {
public:
int distinctSubseqII(string s) {
m_resutl.resize(26);
for (int i = 0; i < 26; i++)
{
m_resutl[i].assign(s.length() + 1, -1);
}
C1097Int ret = 0;
for (char ch = ‘a’; ch <= ‘z’; ch++)
{
ret += Rev(0, s, ch);
}
return ret.ToInt();
}
C1097Int Rev(int iBegin, const string& s,const char beginChar)
{
int& iResult = m_resutl[beginChar - ‘a’][iBegin];
if (-1 != iResult)
{
return iResult;
}
for (; (iBegin < s.length()) && (beginChar != s[iBegin]); iBegin++);
if (s.length() == iBegin)
{
return iResult=0;
}
C1097Int ret =1 ;
for (char ch = ‘a’; ch <= ‘z’; ch++)
{
ret += Rev(iBegin + 1, s, ch);
}
return iResult = ret.ToInt();
}
vector m_resutl;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 **C+

+17**
如无特殊说明,本算法用**C++**实现。

你可能感兴趣的:(#,算法题,算法,动态规划,c++,LeetCode,子序列,字符串)