c++代码,用到了px4 v1.13.3里的geo.h头文件:
#include "geo.h" // from px4 geo utils (gps to ENU)
// 设置参考点,即东北为(0,0)的点的经纬度
double ref_lat_ = 39.978861; //纬度
double ref_lon_ = 116.339803; //经度
MapProjection global_local_proj_ref{ref_lat_, ref_lon_, 0};
// ENU坐标转换到经纬度
float north = 0.0;
float east = 0.0;
double lat; //纬度
double lon; //经度
global_local_proj_ref.reproject(north, east, lat, lon);
// 经纬度转换到ENU坐标系
double lat = 39.978861; //纬度
double lon = 116.339803; //经度
float north;
float east;
global_local_proj_ref.reproject(lat, lon, north, east);
这里有个陷阱,经纬度必须用double数据类型!!!float的精度是不能满足小数点后七到八位的要求的。
顺便一提,这个geo.h转换比较简单,精度可能没那么高,距离远的话(比如1km)可能会和更精确的转换差1m左右。
附上geo.h和geo.cpp,编译的时候可以把geo.cpp编译成一个library再链接到你的程序,或者和你的程序一起编译。
#CMakeLists.txt
add_library(geo_lib
src/geo.cpp)
add_executable(my_node
src/my_node.cpp)
# link libraries for this lib
target_link_libraries(my_node
${catkin_LIBRARIES}
geo_lib
)
或者
#CMakeLists.txt
add_executable(my_node
src/my_node.cpp
src/geo.cpp)
geo.h:
/****************************************************************************
*
* Copyright (C) 2012-2021 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file geo.h
*
* Definition of geo / math functions to perform geodesic calculations
*
* @author Thomas Gubler
* @author Julian Oes
* @author Lorenz Meier
* @author Anton Babushkin
* Additional functions - @author Doug Weibel
*/
#pragma once
#include
#include
#include
#include
/************* Added by Peixuan Shu **********/
#include
/********************************************/
static constexpr float CONSTANTS_ONE_G = 9.80665f; // m/s^2
static constexpr float CONSTANTS_STD_PRESSURE_PA = 101325.0f; // pascals (Pa)
static constexpr float CONSTANTS_STD_PRESSURE_KPA = CONSTANTS_STD_PRESSURE_PA / 1000.0f; // kilopascals (kPa)
static constexpr float CONSTANTS_STD_PRESSURE_MBAR = CONSTANTS_STD_PRESSURE_PA /
100.0f; // Millibar (mbar) (1 mbar = 100 Pa)
static constexpr float CONSTANTS_AIR_DENSITY_SEA_LEVEL_15C = 1.225f; // kg/m^3
static constexpr float CONSTANTS_AIR_GAS_CONST = 287.1f; // J/(kg * K)
static constexpr float CONSTANTS_ABSOLUTE_NULL_CELSIUS = -273.15f; // °C
static constexpr double CONSTANTS_RADIUS_OF_EARTH = 6371000; // meters (m)
static constexpr float CONSTANTS_RADIUS_OF_EARTH_F = CONSTANTS_RADIUS_OF_EARTH; // meters (m)
static constexpr float CONSTANTS_EARTH_SPIN_RATE = 7.2921150e-5f; // radians/second (rad/s)
// XXX remove
struct crosstrack_error_s {
bool past_end; // Flag indicating we are past the end of the line/arc segment
float distance; // Distance in meters to closest point on line/arc
float bearing; // Bearing in radians to closest point on line/arc
} ;
/**
* Returns the distance to the next waypoint in meters.
*
* @param lat_now current position in degrees (47.1234567°, not 471234567°)
* @param lon_now current position in degrees (8.1234567°, not 81234567°)
* @param lat_next next waypoint position in degrees (47.1234567°, not 471234567°)
* @param lon_next next waypoint position in degrees (8.1234567°, not 81234567°)
*/
float get_distance_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next);
/**
* Creates a new waypoint C on the line of two given waypoints (A, B) at certain distance
* from waypoint A
*
* @param lat_A waypoint A latitude in degrees (47.1234567°, not 471234567°)
* @param lon_A waypoint A longitude in degrees (8.1234567°, not 81234567°)
* @param lat_B waypoint B latitude in degrees (47.1234567°, not 471234567°)
* @param lon_B waypoint B longitude in degrees (8.1234567°, not 81234567°)
* @param dist distance of target waypoint from waypoint A in meters (can be negative)
* @param lat_target latitude of target waypoint C in degrees (47.1234567°, not 471234567°)
* @param lon_target longitude of target waypoint C in degrees (47.1234567°, not 471234567°)
*/
void create_waypoint_from_line_and_dist(double lat_A, double lon_A, double lat_B, double lon_B, float dist,
double *lat_target, double *lon_target);
/**
* Creates a waypoint from given waypoint, distance and bearing
* see http://www.movable-type.co.uk/scripts/latlong.html
*
* @param lat_start latitude of starting waypoint in degrees (47.1234567°, not 471234567°)
* @param lon_start longitude of starting waypoint in degrees (8.1234567°, not 81234567°)
* @param bearing in rad
* @param distance in meters
* @param lat_target latitude of target waypoint in degrees (47.1234567°, not 471234567°)
* @param lon_target longitude of target waypoint in degrees (47.1234567°, not 471234567°)
*/
void waypoint_from_heading_and_distance(double lat_start, double lon_start, float bearing, float dist,
double *lat_target, double *lon_target);
/**
* Returns the bearing to the next waypoint in radians.
*
* @param lat_now current position in degrees (47.1234567°, not 471234567°)
* @param lon_now current position in degrees (8.1234567°, not 81234567°)
* @param lat_next next waypoint position in degrees (47.1234567°, not 471234567°)
* @param lon_next next waypoint position in degrees (8.1234567°, not 81234567°)
*/
float get_bearing_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next);
void get_vector_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next, float *v_n,
float *v_e);
void get_vector_to_next_waypoint_fast(double lat_now, double lon_now, double lat_next, double lon_next, float *v_n,
float *v_e);
void add_vector_to_global_position(double lat_now, double lon_now, float v_n, float v_e, double *lat_res,
double *lon_res);
int get_distance_to_line(struct crosstrack_error_s *crosstrack_error, double lat_now, double lon_now,
double lat_start, double lon_start, double lat_end, double lon_end);
int get_distance_to_arc(struct crosstrack_error_s *crosstrack_error, double lat_now, double lon_now,
double lat_center, double lon_center,
float radius, float arc_start_bearing, float arc_sweep);
/*
* Calculate distance in global frame
*/
float get_distance_to_point_global_wgs84(double lat_now, double lon_now, float alt_now,
double lat_next, double lon_next, float alt_next,
float *dist_xy, float *dist_z);
/*
* Calculate distance in local frame (NED)
*/
float mavlink_wpm_distance_to_point_local(float x_now, float y_now, float z_now,
float x_next, float y_next, float z_next,
float *dist_xy, float *dist_z);
/**
* @brief C++ class for mapping lat/lon coordinates to local coordinated using a reference position
*/
class MapProjection final
{
private:
uint64_t _ref_timestamp{0};
double _ref_lat{0.0};
double _ref_lon{0.0};
double _ref_sin_lat{0.0};
double _ref_cos_lat{0.0};
bool _ref_init_done{false};
public:
/**
* @brief Construct a new Map Projection object
* The generated object will be uninitialized.
* To initialize, use the `initReference` function
*/
MapProjection() = default;
/**
* @brief Construct and initialize a new Map Projection object
*/
MapProjection(double lat_0, double lon_0)
{
initReference(lat_0, lon_0);
}
/**
* @brief Construct and initialize a new Map Projection object
*/
MapProjection(double lat_0, double lon_0, uint64_t timestamp)
{
initReference(lat_0, lon_0, timestamp);
}
/**
* Initialize the map transformation
*
* Initializes the transformation between the geographic coordinate system and
* the azimuthal equidistant plane
* @param lat in degrees (47.1234567°, not 471234567°)
* @param lon in degrees (8.1234567°, not 81234567°)
*/
void initReference(double lat_0, double lon_0, uint64_t timestamp);
/**
* Initialize the map transformation
*
* with reference coordinates on the geographic coordinate system
* where the azimuthal equidistant plane's origin is located
* @param lat in degrees (47.1234567°, not 471234567°)
* @param lon in degrees (8.1234567°, not 81234567°)
*/
inline void initReference(double lat_0, double lon_0)
{
initReference(lat_0, lon_0, hrt_absolute_time());
}
/**
* @return true, if the map reference has been initialized before
*/
bool isInitialized() const { return _ref_init_done; };
/**
* @return the timestamp of the reference which the map projection was initialized with
*/
uint64_t getProjectionReferenceTimestamp() const { return _ref_timestamp; };
/**
* @return the projection reference latitude in degrees
*/
double getProjectionReferenceLat() const { return math::degrees(_ref_lat); };
/**
* @return the projection reference longitude in degrees
*/
double getProjectionReferenceLon() const { return math::degrees(_ref_lon); };
/**
* Transform a point in the geographic coordinate system to the local
* azimuthal equidistant plane using the projection
* @param lat in degrees (47.1234567°, not 471234567°)
* @param lon in degrees (8.1234567°, not 81234567°)
* @param x north
* @param y east
*/
void project(double lat, double lon, float &x, float &y) const;
/**
* Transform a point in the geographic coordinate system to the local
* azimuthal equidistant plane using the projection
* @param lat in degrees (47.1234567°, not 471234567°)
* @param lon in degrees (8.1234567°, not 81234567°)
* @return the point in local coordinates as north / east
*/
inline matrix::Vector2f project(double lat, double lon) const
{
matrix::Vector2f res;
project(lat, lon, res(0), res(1));
return res;
}
/**
* Transform a point in the local azimuthal equidistant plane to the
* geographic coordinate system using the projection
*
* @param x north
* @param y east
* @param lat in degrees (47.1234567°, not 471234567°)
* @param lon in degrees (8.1234567°, not 81234567°)
*/
void reproject(float x, float y, double &lat, double &lon) const;
};
geo.cpp:
/****************************************************************************
*
* Copyright (c) 2012-2021 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file geo.c
*
* Geo / math functions to perform geodesic calculations
*
* @author Thomas Gubler
* @author Julian Oes
* @author Lorenz Meier
* @author Anton Babushkin
*/
#include "geo.h"
#include
using matrix::wrap_pi;
using matrix::wrap_2pi;
#ifndef hrt_absolute_time
# define hrt_absolute_time() (0)
#endif
/*
* Azimuthal Equidistant Projection
* formulas according to: http://mathworld.wolfram.com/AzimuthalEquidistantProjection.html
*/
void MapProjection::initReference(double lat_0, double lon_0, uint64_t timestamp)
{
_ref_timestamp = timestamp;
_ref_lat = math::radians(lat_0);
_ref_lon = math::radians(lon_0);
_ref_sin_lat = sin(_ref_lat);
_ref_cos_lat = cos(_ref_lat);
_ref_init_done = true;
}
void MapProjection::project(double lat, double lon, float &x, float &y) const
{
const double lat_rad = math::radians(lat);
const double lon_rad = math::radians(lon);
const double sin_lat = sin(lat_rad);
const double cos_lat = cos(lat_rad);
const double cos_d_lon = cos(lon_rad - _ref_lon);
const double arg = math::constrain(_ref_sin_lat * sin_lat + _ref_cos_lat * cos_lat * cos_d_lon, -1.0, 1.0);
const double c = acos(arg);
double k = 1.0;
if (fabs(c) > 0) {
k = (c / sin(c));
}
x = static_cast(k * (_ref_cos_lat * sin_lat - _ref_sin_lat * cos_lat * cos_d_lon) * CONSTANTS_RADIUS_OF_EARTH);
y = static_cast(k * cos_lat * sin(lon_rad - _ref_lon) * CONSTANTS_RADIUS_OF_EARTH);
}
void MapProjection::reproject(float x, float y, double &lat, double &lon) const
{
const double x_rad = (double)x / CONSTANTS_RADIUS_OF_EARTH;
const double y_rad = (double)y / CONSTANTS_RADIUS_OF_EARTH;
const double c = sqrt(x_rad * x_rad + y_rad * y_rad);
if (fabs(c) > 0) {
const double sin_c = sin(c);
const double cos_c = cos(c);
const double lat_rad = asin(cos_c * _ref_sin_lat + (x_rad * sin_c * _ref_cos_lat) / c);
const double lon_rad = (_ref_lon + atan2(y_rad * sin_c, c * _ref_cos_lat * cos_c - x_rad * _ref_sin_lat * sin_c));
lat = math::degrees(lat_rad);
lon = math::degrees(lon_rad);
} else {
lat = math::degrees(_ref_lat);
lon = math::degrees(_ref_lon);
}
}
float get_distance_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next)
{
const double lat_now_rad = math::radians(lat_now);
const double lat_next_rad = math::radians(lat_next);
const double d_lat = lat_next_rad - lat_now_rad;
const double d_lon = math::radians(lon_next) - math::radians(lon_now);
const double a = sin(d_lat / 2.0) * sin(d_lat / 2.0) + sin(d_lon / 2.0) * sin(d_lon / 2.0) * cos(lat_now_rad) * cos(
lat_next_rad);
const double c = atan2(sqrt(a), sqrt(1.0 - a));
return static_cast(CONSTANTS_RADIUS_OF_EARTH * 2.0 * c);
}
void create_waypoint_from_line_and_dist(double lat_A, double lon_A, double lat_B, double lon_B, float dist,
double *lat_target, double *lon_target)
{
if (fabsf(dist) < FLT_EPSILON) {
*lat_target = lat_A;
*lon_target = lon_A;
} else {
float heading = get_bearing_to_next_waypoint(lat_A, lon_A, lat_B, lon_B);
waypoint_from_heading_and_distance(lat_A, lon_A, heading, dist, lat_target, lon_target);
}
}
void waypoint_from_heading_and_distance(double lat_start, double lon_start, float bearing, float dist,
double *lat_target, double *lon_target)
{
bearing = wrap_2pi(bearing);
double radius_ratio = static_cast(dist) / CONSTANTS_RADIUS_OF_EARTH;
double lat_start_rad = math::radians(lat_start);
double lon_start_rad = math::radians(lon_start);
*lat_target = asin(sin(lat_start_rad) * cos(radius_ratio) + cos(lat_start_rad) * sin(radius_ratio) * cos((
double)bearing));
*lon_target = lon_start_rad + atan2(sin((double)bearing) * sin(radius_ratio) * cos(lat_start_rad),
cos(radius_ratio) - sin(lat_start_rad) * sin(*lat_target));
*lat_target = math::degrees(*lat_target);
*lon_target = math::degrees(*lon_target);
}
float get_bearing_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next)
{
const double lat_now_rad = math::radians(lat_now);
const double lat_next_rad = math::radians(lat_next);
const double cos_lat_next = cos(lat_next_rad);
const double d_lon = math::radians(lon_next - lon_now);
/* conscious mix of double and float trig function to maximize speed and efficiency */
const float y = static_cast(sin(d_lon) * cos_lat_next);
const float x = static_cast(cos(lat_now_rad) * sin(lat_next_rad) - sin(lat_now_rad) * cos_lat_next * cos(d_lon));
return wrap_pi(atan2f(y, x));
}
void
get_vector_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next, float *v_n, float *v_e)
{
const double lat_now_rad = math::radians(lat_now);
const double lat_next_rad = math::radians(lat_next);
const double d_lon = math::radians(lon_next) - math::radians(lon_now);
/* conscious mix of double and float trig function to maximize speed and efficiency */
*v_n = static_cast(CONSTANTS_RADIUS_OF_EARTH * (cos(lat_now_rad) * sin(lat_next_rad) - sin(lat_now_rad) * cos(
lat_next_rad) * cos(d_lon)));
*v_e = static_cast(CONSTANTS_RADIUS_OF_EARTH * sin(d_lon) * cos(lat_next_rad));
}
void
get_vector_to_next_waypoint_fast(double lat_now, double lon_now, double lat_next, double lon_next, float *v_n,
float *v_e)
{
double lat_now_rad = math::radians(lat_now);
double lon_now_rad = math::radians(lon_now);
double lat_next_rad = math::radians(lat_next);
double lon_next_rad = math::radians(lon_next);
double d_lat = lat_next_rad - lat_now_rad;
double d_lon = lon_next_rad - lon_now_rad;
/* conscious mix of double and float trig function to maximize speed and efficiency */
*v_n = static_cast(CONSTANTS_RADIUS_OF_EARTH * d_lat);
*v_e = static_cast(CONSTANTS_RADIUS_OF_EARTH * d_lon * cos(lat_now_rad));
}
void add_vector_to_global_position(double lat_now, double lon_now, float v_n, float v_e, double *lat_res,
double *lon_res)
{
double lat_now_rad = math::radians(lat_now);
double lon_now_rad = math::radians(lon_now);
*lat_res = math::degrees(lat_now_rad + (double)v_n / CONSTANTS_RADIUS_OF_EARTH);
*lon_res = math::degrees(lon_now_rad + (double)v_e / (CONSTANTS_RADIUS_OF_EARTH * cos(lat_now_rad)));
}
// Additional functions - @author Doug Weibel
int get_distance_to_line(struct crosstrack_error_s *crosstrack_error, double lat_now, double lon_now,
double lat_start, double lon_start, double lat_end, double lon_end)
{
// This function returns the distance to the nearest point on the track line. Distance is positive if current
// position is right of the track and negative if left of the track as seen from a point on the track line
// headed towards the end point.
int return_value = -1; // Set error flag, cleared when valid result calculated.
crosstrack_error->past_end = false;
crosstrack_error->distance = 0.0f;
crosstrack_error->bearing = 0.0f;
float dist_to_end = get_distance_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);
// Return error if arguments are bad
if (dist_to_end < 0.1f) {
return -1;
}
float bearing_end = get_bearing_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);
float bearing_track = get_bearing_to_next_waypoint(lat_start, lon_start, lat_end, lon_end);
float bearing_diff = wrap_pi(bearing_track - bearing_end);
// Return past_end = true if past end point of line
if (bearing_diff > M_PI_2_F || bearing_diff < -M_PI_2_F) {
crosstrack_error->past_end = true;
return_value = 0;
return return_value;
}
crosstrack_error->distance = (dist_to_end) * sinf(bearing_diff);
if (sinf(bearing_diff) >= 0) {
crosstrack_error->bearing = wrap_pi(bearing_track - M_PI_2_F);
} else {
crosstrack_error->bearing = wrap_pi(bearing_track + M_PI_2_F);
}
return_value = 0;
return return_value;
}
int get_distance_to_arc(struct crosstrack_error_s *crosstrack_error, double lat_now, double lon_now,
double lat_center, double lon_center,
float radius, float arc_start_bearing, float arc_sweep)
{
// This function returns the distance to the nearest point on the track arc. Distance is positive if current
// position is right of the arc and negative if left of the arc as seen from the closest point on the arc and
// headed towards the end point.
// Determine if the current position is inside or outside the sector between the line from the center
// to the arc start and the line from the center to the arc end
float bearing_sector_start = 0.0f;
float bearing_sector_end = 0.0f;
float bearing_now = get_bearing_to_next_waypoint(lat_now, lon_now, lat_center, lon_center);
int return_value = -1; // Set error flag, cleared when valid result calculated.
crosstrack_error->past_end = false;
crosstrack_error->distance = 0.0f;
crosstrack_error->bearing = 0.0f;
// Return error if arguments are bad
if (radius < 0.1f) {
return return_value;
}
if (arc_sweep >= 0.0f) {
bearing_sector_start = arc_start_bearing;
bearing_sector_end = arc_start_bearing + arc_sweep;
if (bearing_sector_end > 2.0f * M_PI_F) { bearing_sector_end -= (2 * M_PI_F); }
} else {
bearing_sector_end = arc_start_bearing;
bearing_sector_start = arc_start_bearing - arc_sweep;
if (bearing_sector_start < 0.0f) { bearing_sector_start += (2 * M_PI_F); }
}
bool in_sector = false;
// Case where sector does not span zero
if (bearing_sector_end >= bearing_sector_start && bearing_now >= bearing_sector_start
&& bearing_now <= bearing_sector_end) {
in_sector = true;
}
// Case where sector does span zero
if (bearing_sector_end < bearing_sector_start && (bearing_now > bearing_sector_start
|| bearing_now < bearing_sector_end)) {
in_sector = true;
}
// If in the sector then calculate distance and bearing to closest point
if (in_sector) {
crosstrack_error->past_end = false;
float dist_to_center = get_distance_to_next_waypoint(lat_now, lon_now, lat_center, lon_center);
if (dist_to_center <= radius) {
crosstrack_error->distance = radius - dist_to_center;
crosstrack_error->bearing = bearing_now + M_PI_F;
} else {
crosstrack_error->distance = dist_to_center - radius;
crosstrack_error->bearing = bearing_now;
}
// If out of the sector then calculate dist and bearing to start or end point
} else {
// Use the approximation that 111,111 meters in the y direction is 1 degree (of latitude)
// and 111,111 * cos(latitude) meters in the x direction is 1 degree (of longitude) to
// calculate the position of the start and end points. We should not be doing this often
// as this function generally will not be called repeatedly when we are out of the sector.
double start_disp_x = (double)radius * sin((double)arc_start_bearing);
double start_disp_y = (double)radius * cos((double)arc_start_bearing);
double end_disp_x = (double)radius * sin((double)wrap_pi(arc_start_bearing + arc_sweep));
double end_disp_y = (double)radius * cos((double)wrap_pi(arc_start_bearing + arc_sweep));
double lon_start = lon_now + start_disp_x / 111111.0;
double lat_start = lat_now + start_disp_y * cos(lat_now) / 111111.0;
double lon_end = lon_now + end_disp_x / 111111.0;
double lat_end = lat_now + end_disp_y * cos(lat_now) / 111111.0;
float dist_to_start = get_distance_to_next_waypoint(lat_now, lon_now, lat_start, lon_start);
float dist_to_end = get_distance_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);
if (dist_to_start < dist_to_end) {
crosstrack_error->distance = dist_to_start;
crosstrack_error->bearing = get_bearing_to_next_waypoint(lat_now, lon_now, lat_start, lon_start);
} else {
crosstrack_error->past_end = true;
crosstrack_error->distance = dist_to_end;
crosstrack_error->bearing = get_bearing_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);
}
}
crosstrack_error->bearing = wrap_pi(crosstrack_error->bearing);
return_value = 0;
return return_value;
}
float get_distance_to_point_global_wgs84(double lat_now, double lon_now, float alt_now,
double lat_next, double lon_next, float alt_next,
float *dist_xy, float *dist_z)
{
double current_x_rad = math::radians(lat_next);
double current_y_rad = math::radians(lon_next);
double x_rad = math::radians(lat_now);
double y_rad = math::radians(lon_now);
double d_lat = x_rad - current_x_rad;
double d_lon = y_rad - current_y_rad;
double a = sin(d_lat / 2.0) * sin(d_lat / 2.0) + sin(d_lon / 2.0) * sin(d_lon / 2.0) * cos(current_x_rad) * cos(x_rad);
double c = 2 * atan2(sqrt(a), sqrt(1 - a));
const float dxy = static_cast(CONSTANTS_RADIUS_OF_EARTH * c);
const float dz = static_cast(alt_now - alt_next);
*dist_xy = fabsf(dxy);
*dist_z = fabsf(dz);
return sqrtf(dxy * dxy + dz * dz);
}
float mavlink_wpm_distance_to_point_local(float x_now, float y_now, float z_now,
float x_next, float y_next, float z_next,
float *dist_xy, float *dist_z)
{
float dx = x_now - x_next;
float dy = y_now - y_next;
float dz = z_now - z_next;
*dist_xy = sqrtf(dx * dx + dy * dy);
*dist_z = fabsf(dz);
return sqrtf(dx * dx + dy * dy + dz * dz);
}