- flink作业访问zk出现acl报错问题分析
spring208208
大数据组件线上问题分析flinkzookeeper大数据
#问题现象向yarn集群提交flink作业的时候会出现zkacl的异常经确认:1.zk相关acl密码没有更改过2.重新部署客户端配置后提交任务同样报错3.修改flink的zk目录,重启后可以正常运行任务(在zk重新生了新的znode节点)#问题分析1.首先确认是否是权限的问题,即程序中zk用户没有权限操作zk上的flink节点目录确认集群上zookeeper的flink的acl权限,确认为flin
- JAVA代码实现ElasticSearch搜索(入门-进阶)(一):搜索方法、多字段查询、高亮展示
majunssz
elasticsearchelasticsearch
一、搜索方法对比首先存入一条数据count="ilikeeatingandkuing"默认分词器应该将内容分为“i”“like”“eating”“and”“kuing”1.QueryBuilders.matchQuery("count",count);会将搜索词分词,再与目标查询字段进行匹配,若分词中的任意一个词与目标字段匹配上,则可查询到。count="i"可查出count="ili"可查出co
- opencv对图像处理
syfirst1111
图像处理opencv计算机视觉
形态学转换:基于图像形状的操作,通常在二进制图像上执行。腐蚀、膨胀:腐蚀:求局部最小值,原图高亮部分被蚕食膨胀:求局部最大值,原图高亮部分部分扩张img=cv.imread(path)kenel=np.ones((5,5),np.uint8)#创建核结构img2=cv.erode(img,kenel)#腐蚀去噪img1=cv.dilate(img,kenel)#膨胀目标增大,填充孔洞图像平滑(去噪
- Ubuntu解决开机黑屏
五花肉村长
Linuxubuntulinux运维编辑器前端服务器
Ubuntu系统开机后出现黑屏问题时,可以使用以下方法:1.检查硬件连接:首先,确保所有硬件设备(如显示器、键盘和鼠标)都正确连接并且正常工作.尝试重新插拔它们,确保它们连接牢固且没有松动。2.强制重新启动:系统可能遇到问题导致无法正确启动。按下电源按钮,将计算机完全关机,然后再次启动。3.检查显示器连接:确保显示器正确连接到计算机,并且显示器输入源正确设置。4.进入恢复模式:在启动过程中按下Sh
- 记录:(error) NOAUTH Authentication required...【解决方案】
bug菌¹
全栈Bug调优(实战版)#CSDN问答解惑(全栈版)redis连接报错Authentication
作者:bug菌✏️博客:CSDN、掘金等公众号:猿圈奇妙屋特别声明:原创不易,转载请附上原文出处链接和本文声明,谢谢配合。版权声明:文章里可能部分文字或者图片来源于互联网或者百度百科,如有侵权请联系bug菌处理。一、前言环境版本:centos7.6+redis6.2.6+xshell5二、排错通过xshell5远程连接阿里云服务器,内核是cent
- C语言【文件操作】详解下
Run_Teenage
C语言基础c语言
引言详细介绍了文件的随机读写函数和文件读取结束的判定看这篇博文前,希望您先仔细看一下这篇博文,理解一下文件指针和流的概念:C语言【文件操作】详解上-CSDN博客一、文件的随机读写函数1.fseek函数根据文件指针的位置和偏移量来定位文件指针(文件内容的光标)。函数原型:intfseek(FILE*stream,longintoffset,intorigin);作用:重新定位流位置指示器参数:str
- MySQL 8.0新特性深度解析:窗口函数与JSON数据处理的10大技巧
墨瑾轩
一起学学数据库【一】mysqljson
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣第1章:MySQL8.0简介嗨,亲爱的小伙伴们!欢迎来到MySQL8.0的奇妙世界,这里充满了新鲜和惊喜。MySQL8.0是一个数据库界的超级英雄,它带着一系列令人兴奋的新特性,比如窗口函数和JSON数据处理,来拯救我们的数据处理任务。1.1MySQL8.0的
- NLP高频面试题(七)——GPT和Bert的mask有什么区别?
Chaos_Wang_
NLP常见面试题自然语言处理gptbert
GPT和BERT的Mask机制对比:核心区别与优化策略在NLP领域,GPT和BERT是最具代表性的预训练语言模型之一。它们都在训练过程中使用了Mask机制来引导模型学习语言表示,但具体实现方式和目标却有所不同。本文将深入探讨GPT和BERT的Mask方法的核心区别,并分析其优化策略。1.BERT的Mask机制:基于MLM(MaskedLanguageModel)BERT(Bidirectional
- 知识图谱中NLP新技术
魔王阿卡纳兹
知识图谱入门大数据治理与分析知识图谱自然语言处理人工智能
知识图谱与自然语言处理(NLP)的结合是当前人工智能领域的前沿方向,其技术发展呈现多维度融合与场景深化的特点。以下从核心技术突破、应用场景创新及未来趋势三个层面,系统梳理知识图谱中NLP的最新进展:一、核心技术突破基于预训练模型的图谱构建与增强预训练语言模型与知识嵌入融合:以BERT、KEPLER为代表的模型通过联合优化知识嵌入(KE)和语言建模目标,将知识图谱中的结构化知识融入预训练过程,显著提
- 微软 LIDA 库:基于大模型的自动化数据分析与可视化
窝窝和牛牛
microsoft数据分析
微软LIDA库:基于大模型的自动化数据分析与可视化一、核心架构与LLM交互流程调用LLM生成数据摘要基于LLM推理分析目标LLM生成可视化代码结合图像生成模型优化原始数据Summarizer模块结构化摘要GoalExplorer模块可视化目标列表VizGenerator模块可执行图表代码Infographer模块风格化信息图表二、LLM交互核心功能1.多模型支持架构兼容主流LLM服务商:通过统一接
- 关于Go那些懒得看又不得不知道的东西
Hock2024
golang开发语言后端
写在前面当开始学习go,亦或是cpp、还是java向go进行转职,这部分内容都是比较重要的。go的编译环境,模块管理以及一些基本的语法我认为还是很有必要去学习的,因此重新学习了这个部分并且写下下面的学习笔记!如果有写错或者不全面的地方,还希望大家及时纠正和指导。连接环境首先,作为一个后端er,能使用linux系统是必备的技能,这里我建议可以使用Xshell连接云服务器的方案来完成。云服务器建议使用
- CAD二次开发踩过的坑
我的sun&shine
CAD二次开发c++
CAD二次开发踩过的坑CAD二次开发踩过的坑一、3D图形编译不过二、智能指针三、多文档操作规范流程四、CAD系统变量(参数)大全五、细节注意CAD图纸在软件中出现许多连接线线怎么关闭C++try无法展开无调试信息:重新生成变量已被优化掉,因而不可用两个列表中选中第一个再选第二个时第一个的选中见了预览时无法找到k3DDrawing无法缩放:静态框的通知打开intersectWith无法求交点对话框老
- JavaScript基础-DOM事件流
難釋懷
javascript开发语言
在Web开发过程中,理解和掌握DOM事件流是实现高效交互的关键。DOM事件流描述了当一个事件发生时,它在文档树中的传播路径。了解事件流的概念有助于我们更精确地控制事件处理逻辑,避免不必要的行为,并提升用户体验。本文将深入探讨DOM事件流的基本概念,包括事件捕获、目标阶段和事件冒泡,并通过示例展示如何应用这些知识。一、什么是DOM事件流?DOM事件流是指事件在整个页面结构中传播的过程。根据W3C标准
- python之pyttsx3实现文字转语音播报
l8947943
python问题语音识别人工智能pyttsx3python朗读
1.pyttsx3是什么pyttsx3是Python中的文本到语音转换库,可以实现文本的朗读功能。2.pyttsx3的安装pipinstallpyttsx33.pyttsx3的demoimportpyttsx3pyttsx3.speak("Areyouok?")pyttsx3.speak("最近有许多打工人都说打工好难")戴上耳机直接跑即可。是不是很简单!那如果我们想对读音的速率,中英文问题进行自
- 给普通人看的深度学习说明书:用快递系统理解AI如何思考
嵌入式Jerry
PythonAI人工智能深度学习
第一章:理解AI的思维方式(快递版)1.1快递分拣站的故事假设你管理一个快递分拣站:传统方法:手动制定规则(比如根据邮编分拣)机器学习:观察老员工的分拣记录,总结规律深度学习:搭建自动分拣流水线,自主发现隐藏规则1.2神经网络就像智能分拣机传送带(输入层):接收包裹信息(图片像素/文字等)#就像扫描快递单input_data=[0.2,0.7,0.1]#归一化后的特征数据分拣工人(隐藏层):每个工
- linux环境下安装Redis后却找不到./src/redis-server
Lichenpar
redis#记录BUG解决redis
原因是因为在执行make命令的时候失败了。失败的原因大概率是环境没有安装gcc命令。先安装gcc命令yum-yinstallgcc然后再进入到redis安装目录下执行makedistclean然后重新编译一遍make这次的编译过程时间就会长一些了。然后启动./src/redis-server
- AWS SAP学习笔记-概念
HainesFreeman
AWSaws
1、什么是ETL应用程序,举个例子说明?ETL(Extract,Transform,Load)应用程序是一种用于数据处理和迁移的工具或程序,它主要负责从多个数据源提取数据,对数据进行转换和清洗,然后将处理后的数据加载到目标数据仓库或数据库中。ETL应用程序广泛应用于数据集成、数据仓库构建、数据分析和数据迁移等场景。ETL的三个主要步骤:Extract(提取):从各种数据源(如数据库、文件、API等
- CBNet--一种新的目标检测的复合骨干网体系结构
weixin_45963617
深度学习系列
一、Introduction一般来说,在一个典型的基于CNN的目标检测器中,使用主干网络来提取检测对象的基本特征,该网络通常是为图像分类任务而设计的,并在ImageNet上预训练。毫无疑问,更强大的主干网可以带来更好的检测性能。尽管最先进的基于深度的大骨干网络的探测器取得了很好的结果,但仍有很大改进空间。此外,通过设计一个新的更强大的主干网络并在ImageNet上预训练来获取好的检测性能是十分昂贵
- 遗传算法-变异算法
ArthurKingYs
遗传算法遗传算法神经网络
遗传算法系列(4)变异算法在基因交叉之后产生的子代个体,其变量可能以很小的概率或者步长发生转变,这个过程称为变异(Mutation)。如果进化的目标函数极值是单峰值的,那么,将变异概率p设置为种群数量n的倒数是一个比较好的选择。如果变异概率很大,那么整个搜索过程就退化为一个随机搜索过程。所以,比较稳妥的做法是,进化过程刚刚开始的时候,取p为一个比较大的概率,随着搜索过程的进行,p逐渐缩小到0附近。
- CFD Fluent 出现 floating error 可能是什么原因,怎么解决
Hardess-god
CFD算法人工智能
在使用ANSYSFluent进行流体动力学模拟时,遇到浮点错误(floatingpointerror)通常指的是计算过程中发生了数值问题。这种错误可能由多种原因引起,以下是一些常见的原因及其相应的解决方法:常见原因及解决方法:网格问题:问题描述:如果网格质量不足,特别是含有高偏斜度或非常小的单元,可能会导致计算不稳定。解决方法:重新生成更精细或更合理的网格。确保网格在边界层和流体流动发生显著变化的
- Fluent 与 Openfoam 网格比较
Hardess-god
CFD服务器
ANSYSFluent和OpenFOAM是两个广泛使用的计算流体动力学(CFD)软件,它们在网格生成、处理和使用方面存在一些基本差异。这些差异主要源于两者的设计哲学、目标用户群体和工作流程。以下是Fluent和OpenFOAM在网格生成方面的一些关键比较:1.网格生成工具ANSYSFluent:Fluent通常与ANSYSWorkbench集成使用,后者提供了一个强大的网格生成工具(如ANSYSM
- 纯「牛马」的逻辑玩儿不转了!
求职面试职场创业创业者
又在微信群里被「声讨」了,距离上次这等待遇也过去一段时间了,让人有点「怀念」呢~(别瞎想,我不是字母!)我想此刻趁这心情还未消散殆尽,把近期一直想说但没说的话先说一遍,也暂时不管它是否严谨了,看完想吐槽就尽管来吧!麻木的纯「牛马」们在2022年11月末,ChatGPT的横空出世拉开了AI时代的帷幕,迄今为止两年多过去了,相关基础设施和上层应用已经涌现并迭代了很多版本。在这期间,很多人都至少听说过几
- DeepSeek重塑软件行业:研发工程师的机遇与挑战
LiuSid7
人工智能llama语言模型ai
人工智能技术的浪潮正以前所未有的速度重塑软件行业,而DeepSeek作为其中的代表性技术,已成为研发工程师日常工作中不可忽视的变革力量。从代码生成到架构优化,从效率提升到职业生态重构,DeepSeek正在重新定义工程师的工作范式。以下从技术革新、职业发展、行业趋势三个维度,分析其对研发工程师的核心影响。一、技术革新:从“重复劳动”到“创造力释放”代码生产的效率革命DeepSeek通过自然语言指令生
- 如何使用YOLOv8在AI-TOD数据集上进行遥感目标检测,从安装依赖项、准备数据集、配置YOLOv8、训练和评估模型以及构建GUI应用程序展示检测
计算机C9硕士_算法工程师
人工智能YOLO目标检测遥感
如何使用YOLOv8在AI-TOD数据集上进行遥感目标检测,从安装依赖项、准备数据集、配置YOLOv8、训练和评估模型以及构建GUI应用程序展示检测文章目录1.安装依赖2.数据准备3.配置YOLOv83.1加载预训练模型或自定义模型4.训练模型5.评估模型6.构建GUI应用程序(可选)以下文字及代码仅供参考。遥感目标检测,AI-TOD数据集aitod,训练集11214张,测试集集14018,验证集
- 机器学习结合伏羲模型高精度多尺度气象分析与降尺度实现
Hardess-god
WRF算法人工智能
随着人工智能的发展,机器学习技术在气象预报领域展现出巨大潜力。本文详细探讨如何结合机器学习(ML)和伏羲模型进行高精度多尺度气象模拟分析,并提供详细的实现步骤和相关代码。1.研究目标与技术路线目标:结合机器学习模型与伏羲气象模式,实现区域和局地高精度降尺度。技术路线:伏羲模型提供大尺度气象数据和预报使用机器学习模型(如CNN、LSTM、XGBoost)进行降尺度2.数据准备与处理2.1气象数据获取
- K8S遇到过的比较深刻的Pod问题
Gold Steps.
技术博文分享kubernetes容器云原生故障处理
第一案:Pod集体自杀凌晨12点的告警总是格外刺眼。值班群里突然炸出一连串消息:"支付服务全部下线!但Pod日志显示一切正常!"运维组赶到战场时,发现大量Pod像多米诺骨牌般接连消失,监控面板上却全是绿色对勾。错误排查:#查看案发时间线kubectlgetevents--sort-by='.lastTimestamp'|grep-ikilled#查看Pod详细信息kubectldescribepo
- Springboot使用itext及documents4j操作pdf(word转pdf、pdf加水印(文字或图片,可指定位置)、pdf加密(打开密码,编辑密码))
爱编程的小飞哥
SpringBootjavaitext
pom.xml引入com.documents4jdocuments4j-local1.0.3com.documents4jdocuments4j-transformer-msoffice-word1.0.3com.itextpdfitextpdf5.5.11com.itextpdfitext-asian5.2.0创建PDF操作工具类PdfUtilspackagecom.ruoyi.common.u
- 华为OD机试 - 相对开音节 - 正则表达式(Python/JS/C/C++ 2024 E卷 100分)
哪 吒
华为od正则表达式python
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。一、题目描述相对开音节构成的结构为辅音+元音(aeiou)+辅音(r除外)+
- 华为OD机试 - 数列描述 - 动态规划(Python/JS/C/C++ 2024 B卷 100分)
哪 吒
华为od动态规划python
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。一、题目描述有一个数列a[N](N=60),从a[0]开始,每一项都是一个数
- 华为OD机试 - 输出单向链表中倒数第k个结点 - 双指针(Python/JS/C/C++ 2024 B卷 100分)
哪 吒
华为od链表python
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。一、题目描述输入一个单向链表,输出该链表中倒数第k个结点,链表的倒数第1个结
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,