Elasticsearch内核解析 - 查询篇 - 知乎
在上一篇《Elasticsearch内核解析 - 写入篇》中,我们介绍了Elasticsearch的写入流程。这一篇,我们会介绍Elasticsearch查询流程。
我们仍然先从Elasticsearch的两个身份:NoSQL和Search领域的查询区别说起。
实时性和《Elasticsearch内核解析 - 写入篇》中的“写操作”一样,对于搜索而言是近实时的,延迟在100ms以上,对于NoSQL则需要是实时的。
一致性指的是写入成功后,下次读操作一定要能读取到最新的数据。对于搜索,这个要求会低一些,可以有一些延迟。但是对于NoSQL数据库,则一般要求最好是强一致性的。
结果匹配上,NoSQL作为数据库,查询过程中只有符合不符合两种情况,而搜索里面还有是否相关,类似于NoSQL的结果只能是0或1,而搜索里面可能会有0.1,0.5,0.9等部分匹配或者更相关的情况。
结果召回上,搜索一般只需要召回最满足条件的Top N结果即可,而NoSQL一般都需要返回满足条件的所有结果。
搜索系统一般都是两阶段查询,第一个阶段查询到对应的Doc ID,也就是PK;第二阶段再通过Doc ID去查询完整文档,而NoSQL数据库一般是一阶段就返回结果。在Elasticsearch中两种都支持。
目前NoSQL的查询,聚合、分析和统计等功能上都是要比搜索弱的。
Elasticsearch使用了Lucene作为搜索引擎库,通过Lucene完成特定字段的搜索等功能,在Lucene中这个功能是通过IndexSearcher的下列接口实现的:
public TopDocs search(Query query, int n);
public Document doc(int docID);
public int count(Query query);
......(其他)
第一个search接口实现搜索功能,返回最满足Query的N个结果;第二个doc接口通过doc id查询Doc内容;第三个count接口通过Query获取到命中数。
这三个功能是搜索中的最基本的三个功能点,对于大部分Elasticsearch中的查询都是比较复杂的,直接用这个接口是无法满足需求的,比如分布式问题。这些问题都留给了Elasticsearch解决,我们接下来看Elasticsearch中相关读功能的剖析。
Elasticsearch中每个Shard都会有多个Replica,主要是为了保证数据可靠性,除此之外,还可以增加读能力,因为写的时候虽然要写大部分Replica Shard,但是查询的时候只需要查询Primary和Replica中的任何一个就可以了。
Search On Replicas
在上图中,该Shard有1个Primary和2个Replica Node,当查询的时候,从三个节点中根据Request中的preference参数选择一个节点查询。preference可以设置_local,_primary,_replica以及其他选项。如果选择了primary,则每次查询都是直接查询Primary,可以保证每次查询都是最新的。如果设置了其他参数,那么可能会查询到R1或者R2,这时候就有可能查询不到最新的数据。
上述代码逻辑在OperationRouting.Java的searchShards方法中。
接下来看一下,Elasticsearch中的查询是如何支持分布式的。
Elasticsearch中通过分区实现分布式,数据写入的时候根据_routing规则将数据写入某一个Shard中,这样就能将海量数据分布在多个Shard以及多台机器上,已达到分布式的目标。这样就导致了查询的时候,潜在数据会在当前index的所有的Shard中,所以Elasticsearch查询的时候需要查询所有Shard,同一个Shard的Primary和Replica选择一个即可,查询请求会分发给所有Shard,每个Shard中都是一个独立的查询引擎,比如需要返回Top 10的结果,那么每个Shard都会查询并且返回Top 10的结果,然后在Client Node里面会接收所有Shard的结果,然后通过优先级队列二次排序,选择出Top 10的结果返回给用户。
这里有一个问题就是请求膨胀,用户的一个搜索请求在Elasticsearch内部会变成Shard个请求,这里有个优化点,虽然是Shard个请求,但是这个Shard个数不一定要是当前Index中的Shard个数,只要是当前查询相关的Shard即可,这个需要基于业务和请求内容优化,通过这种方式可以优化请求膨胀数。
Elasticsearch中的查询主要分为两类,Get请求:通过ID查询特定Doc;Search请求:通过Query查询匹配Doc。
上图中内存中的Segment是指刚Refresh Segment,但是还没持久化到磁盘的新Segment,而非从磁盘加载到内存中的Segment。
对于Search类请求,查询的时候是一起查询内存和磁盘上的Segment,最后将结果合并后返回。这种查询是近实时(Near Real Time)的,主要是由于内存中的Index数据需要一段时间后才会刷新为Segment。
对于Get类请求,查询的时候是先查询内存中的TransLog,如果找到就立即返回,如果没找到再查询磁盘上的TransLog,如果还没有则再去查询磁盘上的Segment。这种查询是实时(Real Time)的。这种查询顺序可以保证查询到的Doc是最新版本的Doc,这个功能也是为了保证NoSQL场景下的实时性要求。
多阶段查询
所有的搜索系统一般都是两阶段查询,第一阶段查询到匹配的DocID,第二阶段再查询DocID对应的完整文档,这种在Elasticsearch中称为query_then_fetch,还有一种是一阶段查询的时候就返回完整Doc,在Elasticsearch中称作query_and_fetch,一般第二种适用于只需要查询一个Shard的请求。
除了一阶段,两阶段外,还有一种三阶段查询的情况。搜索里面有一种算分逻辑是根据TF(Term Frequency)和DF(Document Frequency)计算基础分,但是Elasticsearch中查询的时候,是在每个Shard中独立查询的,每个Shard中的TF和DF也是独立的,虽然在写入的时候通过_routing保证Doc分布均匀,但是没法保证TF和DF均匀,那么就有会导致局部的TF和DF不准的情况出现,这个时候基于TF、DF的算分就不准。为了解决这个问题,Elasticsearch中引入了DFS查询,比如DFS_query_then_fetch,会先收集所有Shard中的TF和DF值,然后将这些值带入请求中,再次执行query_then_fetch,这样算分的时候TF和DF就是准确的,类似的有DFS_query_and_fetch。这种查询的优势是算分更加精准,但是效率会变差。另一种选择是用BM25代替TF/DF模型。
在新版本Elasticsearch中,用户没法指定DFS_query_and_fetch和query_and_fetch,这两种只能被Elasticsearch系统改写。
Elasticsearch中的大部分查询,以及核心功能都是Search类型查询,上面我们了解到查询分为一阶段,二阶段和三阶段,这里我们就以最常见的的二阶段查询为例来介绍查询流程。
查询流程
注册Action
Elasticsearch中,查询和写操作一样都是在ActionModule.java中注册入口处理函数的。
registerHandler.accept(new RestSearchAction(settings, restController));
......
actions.register(SearchAction.INSTANCE, TransportSearchAction.class);
......
如果请求是Rest请求,则会在RestSearchAction中解析请求,检查查询类型,不能设置为dfs_query_and_fetch或者query_and_fetch,这两个目前只能用于Elasticsearch中的优化场景,然后将请求发给后面的TransportSearchAction处理。然后构造SearchRequest,将请求发送给TransportSearchAction处理。
如果是第一阶段的Query Phase请求,则会调用SearchService的executeQueryPhase方法。
如果是第二阶段的Fetch Phase请求,则会调用SearchService的executeFetchPhase方法。
Client Node 也包括了前面说过的Parse Request,这里就不再赘述了,接下来看一下其他的部分。
1. Get Remove Cluster Shard
判断是否需要跨集群访问,如果需要,则获取到要访问的Shard列表。
2. Get Search Shard Iterator
获取当前Cluster中要访问的Shard,和上一步中的Remove Cluster Shard合并,构建出最终要访问的完整Shard列表。
这一步中,会根据Request请求中的参数从Primary Node和多个Replica Node中选择出一个要访问的Shard。
3. For Every Shard:Perform
遍历每个Shard,对每个Shard执行后面逻辑。
4. Send Request To Query Shard
将查询阶段请求发送给相应的Shard。
5. Merge Docs
上一步将请求发送给多个Shard后,这一步就是异步等待返回结果,然后对结果合并。这里的合并策略是维护一个Top N大小的优先级队列,每当收到一个shard的返回,就把结果放入优先级队列做一次排序,直到所有的Shard都返回。
翻页逻辑也是在这里,如果需要取Top 30~ Top 40的结果,这个的意思是所有Shard查询结果中的第30到40的结果,那么在每个Shard中无法确定最终的结果,每个Shard需要返回Top 40的结果给Client Node,然后Client Node中在merge docs的时候,计算出Top 40的结果,最后再去除掉Top 30,剩余的10个结果就是需要的Top 30~ Top 40的结果。
上述翻页逻辑有一个明显的缺点就是每次Shard返回的数据中包括了已经翻过的历史结果,如果翻页很深,则在这里需要排序的Docs会很多,比如Shard有1000,取第9990到10000的结果,那么这次查询,Shard总共需要返回1000 * 10000,也就是一千万Doc,这种情况很容易导致OOM。
另一种翻页方式是使用search_after,这种方式会更轻量级,如果每次只需要返回10条结构,则每个Shard只需要返回search_after之后的10个结果即可,返回的总数据量只是和Shard个数以及本次需要的个数有关,和历史已读取的个数无关。这种方式更安全一些,推荐使用这种。
如果有aggregate,也会在这里做聚合,但是不同的aggregate类型的merge策略不一样,具体的可以在后面的aggregate文章中再介绍。
6. Send Request To Fetch Shard
选出Top N个Doc ID后发送给这些Doc ID所在的Shard执行Fetch Phase,最后会返回Top N的Doc的内容。
接下来我们看第一阶段查询的步骤:
1. Create Search Context
创建Search Context,之后Search过程中的所有中间状态都会存在Context中,这些状态总共有50多个,具体可以查看DefaultSearchContext或者其他SearchContext的子类。
2. Parse Query
解析Query的Source,将结果存入Search Context。这里会根据请求中Query类型的不同创建不同的Query对象,比如TermQuery、FuzzyQuery等,最终真正执行TermQuery、FuzzyQuery等语义的地方是在Lucene中。
这里包括了dfsPhase、queryPhase和fetchPhase三个阶段的preProcess部分,只有queryPhase的preProcess中有执行逻辑,其他两个都是空逻辑,执行完preProcess后,所有需要的参数都会设置完成。
由于Elasticsearch中有些请求之间是相互关联的,并非独立的,比如scroll请求,所以这里同时会设置Context的生命周期。
同时会设置lowLevelCancellation是否打开,这个参数是集群级别配置,同时也能动态开关,打开后会在后面执行时做更多的检测,检测是否需要停止后续逻辑直接返回。
3. Get From Cache
判断请求是否允许被Cache,如果允许,则检查Cache中是否已经有结果,如果有则直接读取Cache,如果没有则继续执行后续步骤,执行完后,再将结果加入Cache。
4. Add Collectors
Collector主要目标是收集查询结果,实现排序,对自定义结果集过滤和收集等。这一步会增加多个Collectors,多个Collector组成一个List。
5. lucene::search
这一步会调用Lucene中IndexSearch的search接口,执行真正的搜索逻辑。每个Shard中会有多个Segment,每个Segment对应一个LeafReaderContext,这里会遍历每个Segment,到每个Segment中去Search结果,然后计算分数。
搜索里面一般有两阶段算分,第一阶段是在这里算的,会对每个Seek到的Doc都计算分数,为了减少CPU消耗,一般是算一个基本分数。这一阶段完成后,会有个排序。然后在第二阶段,再对Top 的结果做一次二阶段算分,在二阶段算分的时候会考虑更多的因子。二阶段算分在后续操作中。
具体请求,比如TermQuery、WildcardQuery的查询逻辑都在Lucene中,后面会有专门文章介绍。
6. rescore
根据Request中是否包含rescore配置决定是否进行二阶段排序,如果有则执行二阶段算分逻辑,会考虑更多的算分因子。二阶段算分也是一种计算机中常见的多层设计,是一种资源消耗和效率的折中。
Elasticsearch中支持配置多个Rescore,这些rescore逻辑会顺序遍历执行。每个rescore内部会先按照请求参数window选择出Top window的doc,然后对这些doc排序,排完后再合并回原有的Top 结果顺序中。
7. suggest::execute()
如果有推荐请求,则在这里执行推荐请求。如果请求中只包含了推荐的部分,则很多地方可以优化。推荐不是今天的重点,这里就不介绍了,后面有机会再介绍。
8. aggregation::execute()
如果含有聚合统计请求,则在这里执行。Elasticsearch中的aggregate的处理逻辑也类似于Search,通过多个Collector来实现。在Client Node中也需要对aggregation做合并。aggregate逻辑更复杂一些,就不在这里赘述了,后面有需要就再单独开文章介绍。
上述逻辑都执行完成后,如果当前查询请求只需要查询一个Shard,那么会直接在当前Node执行Fetch Phase。
Elasticsearch作为搜索系统时,或者任何搜索系统中,除了Query阶段外,还会有一个Fetch阶段,这个Fetch阶段在数据库类系统中是没有的,是搜索系统中额外增加的阶段。搜索系统中额外增加Fetch阶段的原因是搜索系统中数据分布导致的,在搜索中,数据通过routing分Shard的时候,只能根据一个主字段值来决定,但是查询的时候可能会根据其他非主字段查询,那么这个时候所有Shard中都可能会存在相同非主字段值的Doc,所以需要查询所有Shard才能不会出现结果遗漏。同时如果查询主字段,那么这个时候就能直接定位到Shard,就只需要查询特定Shard即可,这个时候就类似于数据库系统了。另外,数据库中的二级索引又是另外一种情况,但类似于查主字段的情况,这里就不多说了。
基于上述原因,第一阶段查询的时候并不知道最终结果会在哪个Shard上,所以每个Shard中管都需要查询完整结果,比如需要Top 10,那么每个Shard都需要查询当前Shard的所有数据,找出当前Shard的Top 10,然后返回给Client Node。如果有100个Shard,那么就需要返回100 * 10 = 1000个结果,而Fetch Doc内容的操作比较耗费IO和CPU,如果在第一阶段就Fetch Doc,那么这个资源开销就会非常大。所以,一般是当Client Node选择出最终Top N的结果后,再对最终的Top N读取Doc内容。通过增加一点网络开销而避免大量IO和CPU操作,这个折中是非常划算的。
Fetch阶段的目的是通过DocID获取到用户需要的完整Doc内容。这些内容包括了DocValues,Store,Source,Script和Highlight等,具体的功能点是在SearchModule中注册的,系统默认注册的有:
除了系统默认的8种外,还有通过插件的形式注册自定义的功能,这些SubPhase中最重要的是Source和Highlight,Source是加载原文,Highlight是计算高亮显示的内容片断。
上述多个SubPhase会针对每个Doc顺序执行,可能会产生多次的随机IO,这里会有一些优化方案,但是都是针对特定场景的,不具有通用性。
Fetch Phase执行完后,整个查询流程就结束了。
Elasticsearch中的查询流程比较简单,更多的查询原理都在Lucene中,后续我们会有针对不同请求的Lucene原理介绍性文章。