- PyTorch 训练一个分类器
亚里
平台工具类pytorch训练网络
文章目录0前言1加载和规范化CIFAR102定义一个卷积网络3定义损失函数和优化器4训练网络5测试网络6在GPU上训练模型参考资料0前言 TRAINGINGACLASSIFIER这篇教程很清楚的描述了如何使用PyTorch训练一个用于图像分类的卷积网络模型。这里记录一下,学习一波写法,供以后查阅,自己跑的项目在github上,稍微修改了一下训练策略,能使分类精度从53%提升到65%;并且增加了训
- TypeError: expected np.ndarray (got numpy.ndarray)问题处理
天籁忍者
运行错误numpyPyTorch环境配置版本冲突代码运行
问题描述:更换设备后重新搭建的anaconda环境,装好numpy、pytorch后运行相关代码,出现该错误。原因:numpy版本有问题。解决方法:我的numpy版本是1.14,重新卸载,下载好1.19的whl文件重新安装,代码可以运行。以上解决方法供参考。
- 开源模型应用落地-DeepSeek-R1-Distill-Qwen-7B与vllm实现推理加速的正确姿势(一)
开源技术探险家
开源模型-实际应用落地#人工智能自然语言处理语言模型深度学习
一、前言在当今人工智能技术迅猛发展的时代,各类人工智能模型如雨后春笋般不断涌现,其性能的优劣直接影响着应用的广度与深度。从自然语言处理到计算机视觉,从智能安防到医疗诊断,AI模型广泛应用于各个领域,人们对其准确性、稳定性和高效性的期望也与日俱增。在此背景下,DeepSeek模型的出现为行业带来了新的曙光。DeepSeek团队开发的DeepSeek-R1-Distill-Qwen-7B模型,利用蒸馏
- Diffusion--人工智能领域的革命性技术
油泼辣子多加
专业名词解释人工智能
在人工智能领域,“diffusion”一词通常指的是“扩散模型”(DiffusionModels),其全称为“DenoisingDiffusionProbabilisticModels”(DDPMs)。扩散模型是一类生成式模型,它通过逐步去噪的方式,从随机噪声中生成高质量的数据,近年来在图像、音频、视频等多个领域取得了显著进展。1.发展历史扩散模型的概念源于物理学中的扩散过程,即粒子在介质中的随机
- python中keras_Python深度学习——keras(一)
weixin_39534321
python中keras
神经网络的核心组件是层(layer),它是一种数据处理模块,可以看成是一个数据过滤器。进去一些数据,出来的数据变得更加有用(吃进去的是草,挤出来的是奶)。大多数深度学习,都是将若干个简单的层给链接起来,实现渐进式的数据过滤,也就是数据蒸馏(过滤到一定程度就等同于蒸馏)首先来看一个数字识别的案例(1)读取训练集和测试集fromkeras.datasetsimportmnist#加载keras中的mn
- 探索2025年的编程新趋势:技术、工具与未来展望
桂月二二
wasm人工智能前端
随着2025年的到来,编程技术领域依旧在高速发展。一些新兴的技术方向、工具和方法正在悄然改变开发者的日常实践。如果您是一名开发者,无论是资深还是初入门道,跟上这些趋势将让您的技能保持前沿,并为职业发展打下坚实基础。本文将从多个维度深入探讨当前最值得关注的编程技术,希望为您的技术提升带来启发。一、AI驱动的编程辅助工具人工智能已成为程序开发的重要组成部分。以下是几款2025年值得关注的AI驱动编程工
- 基于Hexo的主题Fluid搭建Github博客
qq742234984
计算机githubgitnpmnode.jshexo
公众号:数学建模与人工智能基于Hexo的主题Fluid搭建Github博客一、Github配置1.安装Git2.部署本地Git与Github连接(SSH)二、node.js安装和环境配置1.安装node.js2.查看安装是否成功(版本号)3.配置环境变量三、下载Hexo并配置fluid主题1.下载Hexo2.配置fluid主题1.安装fluid2.配置fluid3.更新部署博客页面4.部署到git
- 机器学习--学习计划
kyle~
机器学习机器学习学习人工智能
3周机器学习速成计划基于「28原则」,聚焦机器学习20%的核心概念,覆盖80%的常见应用场景。计划分为理论学习+项目实战,每周学习后通过5个递进项目巩固知识。第1周:数据与监督学习基础学习目标:掌握数据预处理、线性模型与分类任务的基础流程。核心概念(20%关键内容):数据预处理缺失值处理(均值填充、删除)特征缩放(标准化、归一化)分类变量编码(独热编码、标签编码)监督学习基础线性回归(原理、损失函
- 机器学习笔记20241017
tt555555555555
学习笔记深度学习机器学习笔记人工智能
文章目录torchvisiondataloadernn.module卷积非线性激活模型选择训练误差泛化误差正则化权重衰退的基本概念数学表示权重衰退的效果物理解释数值稳定性(GradientVanishing)梯度消失原因解决方法梯度爆炸(GradientExplosion)定义原因解决方法总结继续跟着小土堆学pytorchtorchvision#导入torchvision库,主要用于处理图像数据集
- 基于BiGRU的预测模型及其Python和MATLAB实现
追蜻蜓追累了
机器学习深度学习cnnlstm神经网络gru回归算法
##一、背景在当今快速发展的数据驱动的时代,尤其是在自然语言处理(NLP)、时间序列预测、语音识别等任务中,深度学习技术的应用已经变得越来越普遍。传统的机器学习算法往往无法很好地捕捉数据中的时序信息和上下文关系,因此深度学习中的循环神经网络(RNN)逐渐成为解决这一问题的重要工具。RNN能够处理序列数据,但它们在长序列数据的学习中存在梯度消失和梯度爆炸的问题。为了解决这些问题,长短期记忆网络(LS
- Transformer预测模型及其Python和MATLAB实现
追蜻蜓追累了
transformer深度学习人工智能机器学习算法回归算法神经网络
###一、背景在自然语言处理(NLP)领域,传统的序列到序列(Seq2Seq)模型大多依赖于循环神经网络(RNN)和长短期记忆(LSTM)网络。这些模型虽然在许多任务中取得了成功,但由于其计算效率低下以及长距离依赖关系处理的不足,导致模型训练时间漫长,并在处理较长文本时效果不佳。2017年,Vaswani等人提出的Transformer模型在《AttentionisAllYouNeed》一文中引起
- 关于双塔模型的简单介绍
eso1983
python算法推荐算法
双塔模型是一种常用于推荐系统和信息检索等领域的深度学习架构,其核心思想是将用户和物品分别映射到不同的向量空间,通过计算两个向量的相似度来预测用户对物品的偏好或相关性。1.python示例使用python语言来简单示例一下实现过程如下:importtensorflowastffromtensorflow.keras.layersimportInput,Dense,Embedding,Concaten
- DeepSeek在协同过滤和深度学习技术中的应用场景
python算法(魔法师版)
深度学习人工智能
DeepSeek作为一个集成多种先进技术的平台,利用协同过滤和深度学习技术在多个领域实现了创新应用。以下是一些具体的场景和示例,展示了这些技术如何被应用于实际问题中。一、推荐系统电子商务协同过滤:在电商平台中,协同过滤用于根据用户的历史行为(如购买记录、浏览历史等)推荐相关商品。基于用户的相似性或项目的相似性来生成个性化推荐。Python深色版本fromsurpriseimportDataset,
- 一篇文章了解AI大神何凯明
Ai知识精灵
人工智能
何凯明(KaimingHe)是一位在国际计算机视觉和深度学习领域享有盛誉的科学家。以下是对他的一些详细介绍:个人背景:何凯明出生于中国,后赴美国深造。他分别在2007年和2011年在清华大学获得学士和博士学位,专业是电子工程。职业经历:在完成博士学位后,何凯明加入了微软亚洲研究院(MicrosoftResearchAsia)。2015年,他加入了FacebookAIResearch(FAIR),成
- 【自我修炼】 大疆技术总监对于大学生学习机器人工程师路线建议 ( 大一 篇)
2401_89323952
学习机器人
很多朋友私信问我对机器人和人工智能感兴趣,该怎么展开学习。最近稍微有点空,我写写我的看法。两年前,我在知乎回答如何定义「机器人」?YY硕的回答中试图给机器人做出一个比较仔细的定义,我觉得机器人和人工智能最大的区别在于是否要和物理世界进行交互。今年初在另一篇知乎回答里对机器人或人工智能的研究会帮助我们更好的了解人类自己吗?-YY硕的回答我说到传感器是和物理世界交互的基础。后来,我又在知乎回答有哪些与
- 【C++】C++回调函数基本用法(详细讲解)
米码收割机
C/C++c++php开发语言
博__主:米码收割机技__能:C++/Python语言公众号:测试开发自动化【获取源码+商业合作】荣__誉:阿里云博客专家博主、51CTO技术博主专__注:专注主流机器人、人工智能等相关领域的开发、测试技术。一文详解C++回调函数目录一文详解C++回调函数1.什么是回调函数?2.为什么需要回调函数3.回调函数的应用场合4.举例说明5.高级回调方式1.什么是回调函数?回调函数可以被简单地理解为:A函
- DeepSeek 详细使用教程
神探阿航
计算机产业科普与思考大模型人工智能
1.简介DeepSeek是一款基于人工智能技术的多功能工具,旨在帮助用户高效处理和分析数据、生成内容、解答问题、进行语言翻译等。无论是学术研究、商业分析还是日常使用,DeepSeek都能提供强大的支持。本教程将详细介绍DeepSeek的各项功能及使用方法。2.注册与登录注册:访问DeepSeek官网(https://www.deepseek.com)。点击“注册”按钮。填写邮箱地址、设置密码,并完
- 基于深度学习的物体分割技术:从理论到实践
人工智能_SYBH
深度学习人工智能神经网络机器学习lstm
1.引言物体分割(ObjectSegmentation)是计算机视觉中的一项核心任务,其目标是将图像中的不同物体或区域分离出来,通常分为语义分割和实例分割两种类型。随着深度学习的迅猛发展,尤其是卷积神经网络(CNN)的应用,物体分割技术已取得了显著的进展。它被广泛应用于医学影像分析、自动驾驶、视频监控、机器人感知等领域。在本篇博客中,我们将深入探讨基于深度学习的物体分割技术,介绍其发展历程、核心原
- 人工智能第2章-知识点与学习笔记
想拿高薪的韭菜
人工智能学习笔记
结合教材2.1节,阐述什么是知识、知识的特性,以及知识的表示。人工智能最早应用的两种逻辑是什么?阐述你对这两种逻辑表示的内涵理解。什么谓词,什么是谓词逻辑,什么是谓词公式。谈谈你对谓词逻辑中的量词的理解。阐述谓词公式的解释的含义。介绍谓词公式表示知识的一般步骤,阐述谓词逻辑表示知识的优点与局限性。什么是知识表示的产生式,请详细阐释产生式和谓词逻辑蕴涵式的差异。什么是产生式系统,请详细阐述产生式系统
- 微软推出GRIN-MoE:开创专家路由新范式
OpenCSG
microsoft
前沿科技速递在人工智能领域,模型的性能和可扩展性一直是研究的热点。微软最近推出的GRIN-MoE(Gradient-InformedMixture-of-Experts)模型,以其独特的架构和显著的性能表现,正引领着AI技术的前沿,特别是在编码和数学任务上展现出强大的能力。GRIN-MoE的发布标志着企业级应用中AI技术的又一次飞跃,旨在提升处理复杂任务的效率和准确性。来源:传神社区01模型简介G
- 技术速递|测试和 .NET Aspire 入门
微软Reactor
.net自动化
作者:AaronPowell-PrincipalCloudAdvocate排版:AlanWang自动化测试是软件开发的一个重要组成部分,有助于确保在早期发现漏洞并防止回归问题。在这篇博文中,我们将探讨如何开始在.NETAspire中进行测试,以便我们能够测试分布式应用程序中的各种场景。测试分布式应用程序分布式应用程序本质上很复杂,您需要确保数据库、缓存等组件可用且处于正确状态。然后您的应用程序可能
- 动手学PyTorch建模与应用:从深度学习到大模型
王国平
pytorch人工智能数据分析python数据挖掘
在人工智能时代,机器学习技术日新月异,深度学习是机器学习领域中一个全新的研究方向和应用热点,它是机器学习的一种,也是实现人工智能的必由之路。深度学习的出现不仅推动了机器学习的发展,而且促进了人工智能技术的革新,已经被成功应用在语音识别、图像分类识别、地球物理、大语言模型等领域,具有巨大的发展潜力和价值。本书是一本带领读者快速学习PyTorch并将其运用于深度学习建模方向的入门指南,重点介绍了基于P
- PyTorch数据建模
kaka_R-Py
大数据可视化pytorch人工智能python
回归分析importtorchimportnumpyasnpimportpandasaspdfromtorch.utils.dataimportDataLoader,TensorDatasetimporttimestrat=time.perf_counter()
- AI浪潮下程序员的职业转型与技术进阶之路
nbsaas-boot
人工智能
一、引言1.1研究背景与意义在科技飞速发展的当今时代,人工智能(AI)无疑是最为耀眼的技术领域之一。从早期简单的专家系统到如今复杂的深度学习模型,AI技术经历了从理论探索到广泛应用的巨大跨越,正以前所未有的速度改变着我们的生活和工作方式。近年来,AI技术取得了一系列突破性进展。以GPT系列为代表的大型语言模型,展现出强大的自然语言处理能力,能够实现文本生成、对话交互、代码编写等多种任务。根据《20
- TensorFlow实现卷积神经网络CNN
红叶骑士之初
Tensorflow
一、卷积神经网络CNN简介卷积神经网络(ConvolutionalNeuralNetwork,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等。CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程。在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取
- Sklearn 中的线性回归模型
Cacciatore->
机器学习sklearn线性回归人工智能机器学习python
线性回归的数学模型假设单变量回归模型:hθ(x)=θTx=θ0+θ1x1h_\theta(x)=\theta^Tx=\theta_0+\theta_1x_1hθ(x)=θTx=θ0+θ1x1这里的θ0\theta_0θ0就是偏置,而θ1\theta_1θ1就是权重,而x1x_1x1就是特征。线性回归方程的代价函数为:J(θ)=12m∑mi=1(hθ(x(i))−y(i))2J(\theta)=\f
- DeepSeek的出现对全球GPT产业产生的冲击
不要em0啦
机器学习gpt
引言近年来,人工智能技术的迅猛发展推动了自然语言处理(NLP)领域的革命性进步。特别是以GPT(GenerativePre-trainedTransformer)系列模型为代表的大规模预训练语言模型,已经在全球范围内引发了广泛关注和应用。然而,随着技术的不断演进,新兴的GPT模型如DeepSeek的出现,正在对全球GPT产业产生深远的影响。本文将从技术、市场、应用场景和产业生态等多个维度,深入探讨
- 【机器学习BDT】python代码实现(下)
mcoc132
Python机器学习机器学习python人工智能
文章目录BDT(BootstrapDecisionTree)python实现导入库分类树主体代码回归树主体代码输出函数完整代码后续可能添加的功能BDT(BootstrapDecisionTree)python实现代码仅供参考导入库importCART树_自己写importnumpy其中一个库之前写的分类树主体代码在原始数据权重基础上使用更新的数据权重以更新BDT模型.def分类树(self,BDT
- 国产AI疯卷!DeepSeek-R1成开源霸主,字节腾讯纷纷放大招?
盼达思文体科创
经验分享
引言家人们,最近的AI圈简直是“火药味”十足,热闹程度堪比世界杯!在科技飞速发展的当下,人工智能领域已经成为全球科技竞争的焦点,各国科技企业都在这个赛道上你追我赶,试图占据一席之地。AI技术不仅深刻改变了我们的生活方式,像智能语音助手让生活更便捷,智能推荐算法让信息获取更精准,还推动了众多行业的变革,如医疗、交通、金融等。今天咱们要聊的这几件AI大事,每一件都可能会对未来的科技走向产生深远影响。先
- 更加强大了,这款老牌软件终于回归!
维度哥
系统重装win11系统做电脑系统
经常做系统的人都应该对金狐这个名字不陌生,金狐是一个十分经典的老牌系统维护盘,目前已经走过了16年。这个软件完全免费,而且更新了精品装机维护工具,功能也变得十分强大。金狐系统维护盘核心高效,全能完美这次更新的系统维护盘非常纯净,没有乱七八糟的捆绑广告,大家可以放心使用。本维护盘包含以下组件:1.Windows11PEx64核心版,体积较小,高效多能;2.Windows10PEx64全能版,体积稍大
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象