Segment Anything Model (SAM)本地部署,及应用于自己的数据集完成分割

1.什么是segment-anything?

Segment Anything Model (SAM): a new AI model from Meta AI that can "cut out" any object, in any image, with a single click.

官方网站:Segment Anything | Meta AI

官网提供了一些demo,交互式地分割展示,可以试一下

Segment Anything Model (SAM)本地部署,及应用于自己的数据集完成分割_第1张图片

官网demo提供了3种分割方式。

Hover&Click(鼠标悬浮及点击):

Segment Anything Model (SAM)本地部署,及应用于自己的数据集完成分割_第2张图片

点击想要分割的内容,自动完成分割。左键正选,右键反选。

Box

Segment Anything Model (SAM)本地部署,及应用于自己的数据集完成分割_第3张图片

鼠标圈一个方框,自动分割。

Everything

Segment Anything Model (SAM)本地部署,及应用于自己的数据集完成分割_第4张图片一键分割所有。

2.Github项目

GitHub网址:https://github.com/facebookresearch/segment-anything

 readme很详细,可按照步骤来搞。

Segment Anything Model (SAM)本地部署,及应用于自己的数据集完成分割_第5张图片

克隆远程仓库到本地:

git clone https://github.com/facebookresearch/segment-anything

安装Segment Anything :

cd segment-anything; pip install -e .

特别注意-e后面一个点

Github页面里点击下载一个或者多个模型:

模型文件放到项目的目录即可。

H,L,B分别表示huge,large,base,从大到小。根据硬件能力选择合适的模型。

Segment Anything Model (SAM)本地部署,及应用于自己的数据集完成分割_第6张图片

创建虚拟环境及安装相应的包

3.使用自己的数据集进行分割

法1:使用官方命令

如下,建立input,output文件夹

在input中存放待分割的图片,output用作存放输出的mask。

Segment Anything Model (SAM)本地部署,及应用于自己的数据集完成分割_第7张图片

在pycharm终端中使用下面的命令:
使用base模型
python scripts/amg.py --checkpoint sam_vit_b_01ec64.pth --model-type vit_b --input C:\GithubFile\segment-anything\input --output C:\GithubFile\segment-anything\output
使用huge模型
python scripts/amg.py --checkpoint sam_vit_h_4b8939.pth --model-type vit_h --input C:\GithubFile\segment-anything\input --output C:\GithubFile\segment-anything\output

 官方命令即执行amg.py文件,并传入了一些参数,当传入参数固定时可以直接写在amg.py文件中。

Segment Anything Model (SAM)本地部署,及应用于自己的数据集完成分割_第8张图片

加入default=你的路径,并且将required改为False, 其他各项类似。help中会有一些辅助说明。

Segment Anything Model (SAM)本地部署,及应用于自己的数据集完成分割_第9张图片

输入:

Segment Anything Model (SAM)本地部署,及应用于自己的数据集完成分割_第10张图片

Segment Anything Model (SAM)本地部署,及应用于自己的数据集完成分割_第11张图片

结果:

Segment Anything Model (SAM)本地部署,及应用于自己的数据集完成分割_第12张图片

Segment Anything Model (SAM)本地部署,及应用于自己的数据集完成分割_第13张图片

法2:使用第三方脚本

代码参考:segment-anything本地部署使用_yunteng521的博客-CSDN博客

import cv2
import os
import numpy as np
from segment_anything import sam_model_registry, SamPredictor

input_dir = 'input'
output_dir = 'output'
crop_mode = True  # 是否裁剪到最小范围
# alpha_channel是否保留透明通道
print('最好是每加一个点就按w键predict一次')
os.makedirs(output_dir, exist_ok=True)
image_files = [f for f in os.listdir(input_dir) if
               f.lower().endswith(('.png', '.jpg', '.jpeg', '.JPG', '.JPEG', '.PNG'))]

# sam = sam_model_registry["vit_b"](checkpoint="sam_vit_b_01ec64.pth")
sam = sam_model_registry["vit_h"](checkpoint="sam_vit_h_4b8939.pth")
# 添加使用的模型,用A就把B注释掉
_ = sam.to(device="cuda")  # 注释掉这一行,会用cpu运行,速度会慢很多
predictor = SamPredictor(sam)  # SAM预测图像


def mouse_click(event, x, y, flags, param):  # 鼠标点击事件
    global input_point, input_label, input_stop  # 全局变量,输入点,
    if not input_stop:  # 判定标志是否停止输入响应了!
        if event == cv2.EVENT_LBUTTONDOWN:  # 鼠标左键
            input_point.append([x, y])
            input_label.append(1)  # 1表示前景点
        elif event == cv2.EVENT_RBUTTONDOWN:  # 鼠标右键
            input_point.append([x, y])
            input_label.append(0)  # 0表示背景点
    else:
        if event == cv2.EVENT_LBUTTONDOWN or event == cv2.EVENT_RBUTTONDOWN:  # 提示添加不了
            print('此时不能添加点,按w退出mask选择模式')


def apply_mask(image, mask, alpha_channel=True):  # 应用并且响应mask
    if alpha_channel:
        alpha = np.zeros_like(image[..., 0])  # 制作掩体
        alpha[mask == 1] = 255  # 兴趣地方标记为1,且为白色
        image = cv2.merge((image[..., 0], image[..., 1], image[..., 2], alpha))  # 融合图像
    else:
        image = np.where(mask[..., None] == 1, image, 0)
    return image


def apply_color_mask(image, mask, color, color_dark=0.5):  # 对掩体进行赋予颜色
    for c in range(3):
        image[:, :, c] = np.where(mask == 1, image[:, :, c] * (1 - color_dark) + color_dark * color[c], image[:, :, c])
    return image


def get_next_filename(base_path, filename):  # 进行下一个图像
    name, ext = os.path.splitext(filename)
    for i in range(1, 3):
        new_name = f"{name}_{i}{ext}"
        if not os.path.exists(os.path.join(base_path, new_name)):
            return new_name
    return None


def save_masked_image(image, mask, output_dir, filename, crop_mode_):  # 保存掩盖部分的图像(感兴趣的图像)
    if crop_mode_:
        y, x = np.where(mask)
        y_min, y_max, x_min, x_max = y.min(), y.max(), x.min(), x.max()
        cropped_mask = mask[y_min:y_max + 1, x_min:x_max + 1]
        cropped_image = image[y_min:y_max + 1, x_min:x_max + 1]
        masked_image = apply_mask(cropped_image, cropped_mask)
    else:
        masked_image = apply_mask(image, mask)
    filename = filename[:filename.rfind('.')] + '.png'
    new_filename = get_next_filename(output_dir, filename)

    if new_filename:
        if masked_image.shape[-1] == 4:
            cv2.imwrite(os.path.join(output_dir, new_filename), masked_image, [cv2.IMWRITE_PNG_COMPRESSION, 9])
        else:
            cv2.imwrite(os.path.join(output_dir, new_filename), masked_image)
        print(f"Saved as {new_filename}")
    else:
        print("Could not save the image. Too many variations exist.")


current_index = 0

cv2.namedWindow("image")
cv2.setMouseCallback("image", mouse_click)
input_point = []
input_label = []
input_stop = False
while True:
    filename = image_files[current_index]
    image_orign = cv2.imread(os.path.join(input_dir, filename))
    image_crop = image_orign.copy()  # 原图裁剪
    image = cv2.cvtColor(image_orign.copy(), cv2.COLOR_BGR2RGB)  # 原图色彩转变
    selected_mask = None
    logit_input = None
    while True:
        # print(input_point)
        input_stop = False
        image_display = image_orign.copy()
        display_info = f'{filename} | Press s to save | Press w to predict | Press d to next image | Press a to previous image | Press space to clear | Press q to remove last point '
        cv2.putText(image_display, display_info, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 255), 2, cv2.LINE_AA)
        for point, label in zip(input_point, input_label):  # 输入点和输入类型
            color = (0, 255, 0) if label == 1 else (0, 0, 255)
            cv2.circle(image_display, tuple(point), 5, color, -1)
        if selected_mask is not None:
            color = tuple(np.random.randint(0, 256, 3).tolist())
            selected_image = apply_color_mask(image_display, selected_mask, color)

        cv2.imshow("image", image_display)
        key = cv2.waitKey(1)

        if key == ord(" "):
            input_point = []
            input_label = []
            selected_mask = None
            logit_input = None
        elif key == ord("w"):
            input_stop = True
            if len(input_point) > 0 and len(input_label) > 0:
                # todo 预测图像
                predictor.set_image(image)  # 设置输入图像
                input_point_np = np.array(input_point)  # 输入暗示点,需要转变array类型才可以输入
                input_label_np = np.array(input_label)  # 输入暗示点的类型
                # todo 输入暗示信息,将返回masks
                masks, scores, logits = predictor.predict(
                    point_coords=input_point_np,
                    point_labels=input_label_np,
                    mask_input=logit_input[None, :, :] if logit_input is not None else None,
                    multimask_output=True,
                )

                mask_idx = 0
                num_masks = len(masks)  # masks的数量
                while (1):
                    color = tuple(np.random.randint(0, 256, 3).tolist())  # 随机列表颜色,就是
                    image_select = image_orign.copy()
                    selected_mask = masks[mask_idx]  # 选择msks也就是,a,d切换
                    selected_image = apply_color_mask(image_select, selected_mask, color)
                    mask_info = f'Total: {num_masks} | Current: {mask_idx} | Score: {scores[mask_idx]:.2f} | Press w to confirm | Press d to next mask | Press a to previous mask | Press q to remove last point | Press s to save'
                    cv2.putText(selected_image, mask_info, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 255), 2,
                                cv2.LINE_AA)
                    # todo 显示在当前的图片,
                    cv2.imshow("image", selected_image)

                    key = cv2.waitKey(10)
                    if key == ord('q') and len(input_point) > 0:
                        input_point.pop(-1)
                        input_label.pop(-1)
                    elif key == ord('s'):
                        save_masked_image(image_crop, selected_mask, output_dir, filename, crop_mode_=crop_mode)
                    elif key == ord('a'):
                        if mask_idx > 0:
                            mask_idx -= 1
                        else:
                            mask_idx = num_masks - 1
                    elif key == ord('d'):
                        if mask_idx < num_masks - 1:
                            mask_idx += 1
                        else:
                            mask_idx = 0
                    elif key == ord('w'):
                        break
                    elif key == ord(" "):
                        input_point = []
                        input_label = []
                        selected_mask = None
                        logit_input = None
                        break
                logit_input = logits[mask_idx, :, :]
                print('max score:', np.argmax(scores), ' select:', mask_idx)

        elif key == ord('a'):
            current_index = max(0, current_index - 1)
            input_point = []
            input_label = []
            break
        elif key == ord('d'):
            current_index = min(len(image_files) - 1, current_index + 1)
            input_point = []
            input_label = []
            break
        elif key == 27:
            break
        elif key == ord('q') and len(input_point) > 0:
            input_point.pop(-1)
            input_label.pop(-1)
        elif key == ord('s') and selected_mask is not None:
            save_masked_image(image_crop, selected_mask, output_dir, filename, crop_mode_=crop_mode)

    if key == 27:
        break

使用样例:

先点击w标注,

后点击w预测,

然后点击s保存,

点击d下一张。

Segment Anything Model (SAM)本地部署,及应用于自己的数据集完成分割_第14张图片

每张图片标记不只一个mask

Segment Anything Model (SAM)本地部署,及应用于自己的数据集完成分割_第15张图片

个人感觉,这个脚本不太好用。

你可能感兴趣的:(javascript,开发语言,ecmascript)