- 珍藏!Java SpringBoot 精品源码合集约惠来袭,获取路径大公开
秋野酱
javaspringboot开发语言
技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等设计与开发。主要内容:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论文降重、长期答辩答疑辅导、腾讯会议一对一专业讲解辅导答辩、模拟答辩演练、和理解代码逻辑思路。文末获取源码联系文末获取源码联
- 基于Python+Django的可视化学习系统设计与实现(毕业设计源码+技术文档+系统部署)
逐梦设计
Python毕业设计实战案例pythondjango课程设计vue.js毕业设计源码
博主简介作者简介:Java领域优质创作者、CSDN博客专家、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验,被多个学校常年聘为校外企业导师,指导学生毕业设计并参与学生毕业答辩指导,有较为丰富的相关经验。期待与各位高校教师、企业讲师以及同行交流合作主要内容:Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能与大数据、
- AI 生成 PPT 网站介绍与优缺点分析
KL_lililli
人工智能powerpoint
随着人工智能技术不断发展,利用AI自动生成PPT已成为提高演示文稿制作效率的热门方式。本文将介绍几款主流的AIPPT工具,重点列出免费使用机会较多的网站,并对各平台的优缺点进行详细分析,帮助用户根据自身需求选择合适的工具。1.免费及免费试用机会较多的网站1.1Tome网址:Tome–TheAIassistantforsales简介:Tome是一款专注于AI助力讲故事与演示制作的工具,用户只需输入简
- 机器学习驱动的智能化电池管理技术与应用
满木悦
电池化学机器人化学电池机器学习人工智能硕博研究生
在人工智能与电池管理技术融合的背景下,电池科技的研究和应用正迅速发展,创新解决方案层出不穷。从电池性能的精确评估到复杂电池系统的智能监控,从数据驱动的故障诊断到电池寿命的预测优化,人工智能技术正以其强大的数据处理能力和模式识别优势,推动电池管理领域的技术进步。据最新研究动态,目前在电池管理领域的人工智能应用主要集中在以下几个方面:1.状态估计:包括电池的荷电状态(SOC)和健康状态(SOH)的实时
- 0 Token 间间隔 100% GPU 利用率,百度百舸 AIAK 大模型推理引擎极限优化 TPS
百度云大模型gpu
01什么是大模型推理引擎大模型推理引擎是生成式语言模型运转的发动机,是接受客户输入prompt和生成返回response的枢纽,也是拉起异构硬件,将物理电能转换为人类知识的变形金刚。大模型推理引擎的基本工作模式可以概括为,接收包括输入prompt和采样参数的并发请求,分词并且组装成batch输入给引擎,调度GPU执行前向推理,处理计算结果并转为词元返回给用户。和人类大脑处理语言的机制类似,大模型首
- AI算力要变天了?一文搞懂ASIC和GPU
asicgpuai芯片
近期,全球股市的动荡中,ASIC和GPU这两个科技股概念突然变得火热,引起了市场的高度关注。博通作为ASIC的代表,股价一路猛涨,而英伟达作为GPU的代表,股价却一路下跌。这是否意味着AI算力市场即将变天?随着人工智能技术的飞速发展,AI算力的重要性日益凸显。从早期的简单模型训练到如今的大规模语言模型如ChatGPT等的出现,对算力的需求呈爆发式增长。01那什么是ASIC和GPU?ASIC:定制化
- 云智慧:拥抱AI算法驱动的智能运维服务创新引擎
随着信息化、数字化、智能化的加码,企业对人工智能、大数据等技术应用呈现出明显兴趣,海笔研究对国内中型规模企业调研表明,在2020年,54.1%的企业选择购买人工智能类应用,41.9%的企业选择购买大数据及BI类应用,各类产品软件的应用大幅提升了企业信息系统复杂度,以及运维管理难度。业务发展催生服务需求从系统管理者角度出发,信息系统从“单机Excel表格”到“集中式单系统”再到“微服务、云架构”等,
- 算力租赁:人工智能时代的“水电煤”革命——以NVIDIA 4090为例解读下一代算力解决方案
算法工程gpu
引言:当AI算力需求遇上“算力饥渴症”2023年,ChatGPT仅用2个月突破1亿用户,StableDiffusion让普通人秒变艺术家,但背后是单次训练消耗超10万GB内存、千亿级参数的恐怖算力需求。当全球AI企业陷入“算力饥渴症”时,一种名为算力租赁的创新模式正以每年37%的增速(MarketsandMarkets数据)重塑行业格局。本文将深度解析这一革命性服务,并聚焦搭载NVIDIARTX4
- 梯度下降法理论理解
伶星37
机器学习人工智能
梯度下降法:看似原始却透露着机器学习的本质前提:在研究梯度下降方法之前,你要理解矩阵运算(解析解)的方法矩阵运算目前的缺点只能进行对线性函数经行分析,无法对复杂的函数经行分析什么是梯度,以及梯度向量梯度下降的形象例子以及基本思想有三个兄弟被困在山上,得要死,他们目标是看谁尽快找到山谷中的水源老大比较后选择最陡的方向随便探索一下,就朝较低处走去探测几下就走陡峭的方向梯度下降算法的核心思想就是沿着负梯
- AI大模型产品经理学习路线,2025最新,从AI产品经理零基础入门到精通,非常详细收藏我这一篇够了!
AGI-杠哥
人工智能产品经理学习语言模型agi自然语言处理
随着人工智能技术的发展,尤其是大模型(LargeModel)的兴起,越来越多的企业开始重视这一领域的投入。作为大模型产品经理,你需要具备一系列跨学科的知识和技能,以便有效地推动产品的开发、优化和市场化。以下是一份详细的大模型产品经理学习路线,旨在帮助你构建所需的知识体系,从零基础到精通。一、基础知识阶段1.计算机科学基础数据结构与算法:理解基本的数据结构(如数组、链表、树、图等)和常用算法(如排序
- Java 大视界 -- 基于 Java 的大数据机器学习模型的多模态融合技术与应用(143)
青云交
大数据新视界Java大视界java大数据机器学习多模态融合智能安防智能客服数据处理
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
- 2025年第二届机器学习与神经网络国际学术会议(MLNN 2025)
分享学术科研与论文的禁小默
机器学习神经网络人工智能
重要信息官网:www.icmlnn.org时间:2025年4月22-24日地点:中国-重庆简介2025年第二届机器学习与神经网络国际学术会议(MLNN2025)围绕学习系统与神经网络的核心理论、关键技术和应用展开讨论,涵盖深度学习、计算机视觉、自然语言处理、强化学习等多个子领域,通过特邀报告、主题演讲、海报展示等形式,展示相关领域的最新研究成果和技术创新。征稿主题神经网络机器学习深度学习算法及应用
- 别只会用别人的模型了,自学Ai大模型,顺序千万不要搞反了!刚入门的小白必备!
鸡腿爱学习
人工智能学习自然语言处理服务器数据库
大家好,我是JackBytes,一个专注于将人工智能应用于日常生活的半吊子程序猿,平时主要分享AI、NAS、Docker、搞机技巧、开源项目等。在使用诸如DeepSeek、ChatGPT、豆包、文心一言等大模型之余,你是否知道这些大模型背后的技术原理是什么?假如让你从头开始学习大模型,你知道应该遵循什么样的路线嘛?今天给大家介绍一下Ai大模型的学习路线,顺序千万不要搞反了!,大家可以按照这个路线进
- R.E.D.算法:革新文本分类的半监督学习新范式
真智AI
算法r语言分类人工智能学习
随着大型语言模型(LLMs)在解决问题方面的应用进入新时代,只有少数问题仍然存在不尽如人意的解决方案。大多数分类问题(在概念验证层面)可以通过良好的提示工程技术和自适应的上下文学习(ICL)示例,利用LLMs以70-90%的精确度/F1分数来解决。当您希望持续实现高于此水平的性能时——当提示工程不再足够时,会发生什么?分类难题文本分类是监督学习中最古老且最易理解的示例之一。鉴于这一前提,构建能够处
- 国内外的网络安全成难题,IPLOOK 2022年用产品筑起“护城墙”
爱浦路 IPLOOK
网络安全安全架构
《爱尔兰时报》和爱尔兰国家广播电台(RTE)于12月31日对2021年爱尔兰科技行业的赢家和弱点进行了年终盘点。双方纷纷表示,2021年爱尔兰科技行业最大的弱点是爱尔兰的网络安全,这一年是一场前所未有的灾难。随着人工智能、大数据、5G等新兴技术的发展,企业面临的威胁日益增加,信息安全的重要性变得越来越突显。现在我们把视线从爱尔兰的网络安全问题拉回到国内的网络安全现状。我国对网络安全问题保持时刻警惕
- 文档处理控件Aspose.Words 教程:.NET版中增强的 AI 文档摘要功能
CodeCraft Studio
控件文档管理人工智能excelwordpdf
Aspose.Words是一个功能强大的Word文档处理库。它可以帮助开发人员自动编辑、转换和处理文档。自24.11版以来,Aspose.Wordsfor.NET提供了AI驱动的文档摘要功能,使用户能够从冗长的文本中快速提取关键见解。在25.2版中,我们通过使用Anthropic生成语言模型进行摘要扩展了此功能。本篇内容将对此做讨论的。Aspose.wordsfor.Net最新版下载文档摘要有何新
- 大模型提示词工程师的自我修养-应用二(RAG数据合成与数据多样性问题的解决) -(专题4)
AI专题精讲
大模型专题系列人工智能
1.生成数据大型语言模型(LLMs)具有生成连贯文本的强大能力。通过有效的提示策略,可以引导模型生成更好、一致且更有事实依据的响应。LLMs也特别适用于生成数据,这对于进行各种实验和评估非常有用。例如,我们可以用它来为情感分类器生成快速样本,如下所示:提示词生成10个情感分析的示例。示例分为正面或负面类别。生成2个负面示例和8个正面示例。示例如下格式:Q:A:输出Q:我刚刚得到了最棒的消息!A:正
- 利用AI与MySQL提升工业物联网健康监测的智慧水平——构建预测性维护的新纪元
墨夶
数据库学习资料1人工智能mysql物联网
在工业4.0和智能制造的大背景下,如何确保生产设备的高效稳定运行成为企业竞争力的核心要素之一。传统的事后维修方式已经难以满足现代制造业的需求,而基于人工智能(AI)的预测性维护系统则为这一挑战提供了全新的解决方案。今天,我们将深入探讨如何结合AI技术和MySQL数据库,打造一个智能、高效的工业物联网(IIoT)健康监测平台,助力企业在激烈的市场竞争中脱颖而出。一、为什么选择AI+MySQL?1.A
- MySQL中基于机器学习的自适应缓存热点识别优化策略——开启数据库性能新纪元
墨夶
数据库学习资料1数据库mysql机器学习
在数据驱动的世界里,数据库的性能直接影响到整个应用系统的响应速度和用户体验。随着业务量的增长和技术的发展,传统的缓存机制逐渐暴露出局限性。如何更智能地识别并利用热点数据进行缓存优化,成为提升数据库性能的关键所在。今天,我们将深入探讨一种创新的方法——基于机器学习的自适应缓存热点识别优化策略,并分享其在MySQL中的具体实现方案。为什么选择机器学习?传统上,开发者们依赖于手动配置或预设规则来决定哪
- 【AI大模型】搭建本地大模型GPT-NeoX:详细步骤及常见问题处理
qzw1210
gpt人工智能深度学习
搭建本地大模型GPT-NeoX:详细步骤及常见问题处理GPT-NeoX是一个开源的大型语言模型框架,由EleutherAI开发,可用于训练和部署类似GPT-3的大型语言模型。本指南将详细介绍如何在本地环境中搭建GPT-NeoX,并解决过程中可能遇到的常见问题。1.系统要求1.1硬件要求1.2软件要求操作系统:Linux(推荐Ubuntu20.04或更高版本)CUDA:11.2或更高版本Python
- 密码学,算法在人工智能的实战利用
china—hbaby
人工智能密码学
在人工智能(AI)的快速发展中,数据安全和隐私保护成为了核心议题。密码学,作为保护信息安全的基石,其在AI领域的应用显得尤为重要。本文将探讨密码学在AI中的利用,并提供一些代码示例来展示其实际应用。密码学的概述即常用加密方式密码学(Cryptography)是数学和计算机科学的一个分支,它涉及保护信息的安全性和隐私性。密码学的主要目标是确保信息在传输过程中不被未授权的第三方读取或篡改,以及确保信息
- 【人工智能时代】-人工智能发展史:1900~2023
xiaoli8748_软件开发
人工智能时代人工智能搜索引擎
第一阶段:人工智能发展历史:1900-19591909年西班牙工程师LeonardoTorresyQuevedo发明了“Occultus”,这是一个可以自动执行国际象棋对弈的机器,预示了未来的计算智能。
- LLMOps 是什么?
AI Agent首席体验官
人工智能chatgpt
1.LLMOps是什么?LLMOps(LargeLanguageModelOperations)指的是一系列用于管理、部署和优化大规模语言模型(LLMs)的操作和实践。这些操作可以涵盖多个领域,例如模型的训练、推理优化、部署、监控、故障排除等。在实际应用中,LLMOps的目标是提高语言模型的效率和效果,确保模型能够在各种实际场景中顺利运行。通常,它包括以下几个关键方面:模型训练:如何高效地训练大规
- 语音识别学习系列(13):语音识别中的情感识别与表达
DoYangTan
语音识别学习人工智能
语音识别学习系列(13):语音识别中的情感识别与表达前言在语音识别领域,仅仅将语音准确转换为文字内容已不能满足日益多样化的人机交互需求。人们在交流过程中往往蕴含着丰富的情感信息,语音识别若能对情感进行识别与表达,将会使交互变得更加自然、智能且贴合人性化需求。本期我们就围绕语音识别中的情感识别与表达这一重要主题展开深入探讨,了解其背后的原理、方法以及实际应用价值。一、语音情感识别的基本原理与常用方法
- AI人工智能软件开发方案:开启智能时代的创新钥匙
广州硅基技术官方
人工智能
一、引言:AI浪潮下的软件开发新机遇近年来,人工智能(AI)技术的迅猛发展如同一股汹涌澎湃的浪潮,席卷了全球各个领域。从最初的概念提出到如今的广泛应用,AI历经了漫长的发展历程,终于迎来了属于它的黄金时代。回首过去,AI的发展并非一帆风顺,早期由于计算能力和算法的限制,经历了多次起伏。但随着大数据、云计算、机器学习、深度学习等技术的不断突破,AI迎来了爆发式增长。如今,AI已经深入到人们生活和工作
- 使用Yeager.ai轻松构建LangChain工具和代理
qahaj
人工智能langchainpython
技术背景介绍在现代AI开发框架中,如何快速构建、测试和部署AI解决方案是一个重要的课题。Yeager.ai为此提供了一个完整的生态系统,旨在简化AI智能体和工具的创建过程。它的核心组件yAgents是一个无代码的LangChain代理构建器,能够让用户轻松地集成各种语言模型和资源,非常适合开发者、研究人员和AI爱好者在不同应用场景中使用。核心原理解析Yeager.ai利用LangChain框架,通
- 【机器学习】算法分类
CH3_CH2_CHO
什么?!是机器学习!!机器学习算法有监督学习无监督学习半监督学习强化学习
1、有监督学习1.1定义使用带标签的数据训练模型。有监督学习是机器学习中最常见的一种类型,它利用已知的输入特征和对应的输出标签来训练模型,使模型能够学习到特征与标签之间的映射关系。在训练过程中,模型会不断地调整自身的参数,以最小化预测值与真实标签之间的误差,从而提高预测的准确性。1.2回归问题1.2.1目标预测连续值。回归问题的目标是预测一个连续的数值结果,模型的输出是一个实数值。1.2.2解释回
- 如何使用Langchain加载AZLyrics网页到可用文档格式
dgay_hua
langchainpython
##技术背景介绍在处理歌词数据时,尤其是从网页上获取歌词文本内容,用于自然语言处理或文本分析是常见的需求。AZLyrics是一个提供歌词的主要平台,为我们提供了大量的歌词数据。如果我们可以将这些网页内容自动加载到结构化的文档格式中,将极大地提升我们处理和分析歌词的效率。##核心原理解析Langchain提供了一种简单的方式来将网页内容转换为可用的文档格式。通过使用其文档加载器(DocumentLo
- 使用Titan Takeoff进行高效的自然语言处理模型推理
scaFHIO
自然语言处理人工智能python
在自然语言处理(NLP)领域,每一家企业都在寻求更高效的模型训练和推理解决方案。TitanML的平台通过训练、压缩和推理优化帮助企业构建和部署更佳、更小、更便宜、更快速的NLP模型。特别是其推理服务器TitanTakeoff,使得在本地硬件上轻松部署大语言模型(LLMs)成为可能。技术背景介绍TitanTakeoff是TitanML提供的一项服务,它允许用户在本地硬件上运行推理工作负载。支持大多数
- 使用 Baseten 部署和运行机器学习模型的指南
shuoac
机器学习人工智能python
随着机器学习模型在各个行业中的广泛应用,如何高效地部署和运行这些模型成为一个关键问题。本文将介绍如何使用Baseten平台来部署和服务机器学习模型。Baseten是LangChain生态系统中的一个重要提供者,它提供了所需的基础设施来高效地运行模型。无论是开源模型如Llama2和Mistral,还是专有或经过微调的模型,Baseten都能在专用GPU上运行。技术背景介绍Baseten提供了一种不同
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。