opencv调取摄像头一个简单的实例

opencv调取摄像头一个简单的实例


# coding: utf-8

# In[1]:


import sys 
from detection.MtcnnDetector import MtcnnDetector
from detection.detector import Detector
from detection.fcn_detector import FcnDetector
from train.model import P_Net,R_Net,O_Net
import cv2
import os
import numpy as np
import train.config as config


# In[ ]:


test_mode=config.test_mode
thresh=config.thresh
min_face_size=config.min_face
stride=config.stride
detectors=[None,None,None]
# 模型放置位置
model_path=['model/PNet/','model/RNet/','model/ONet']
batch_size=config.batches
PNet=FcnDetector(P_Net,model_path[0])
detectors[0]=PNet


if test_mode in ["RNet", "ONet"]:
    RNet = Detector(R_Net, 24, batch_size[1], model_path[1])
    detectors[1] = RNet


if test_mode == "ONet":
    ONet = Detector(O_Net, 48, batch_size[2], model_path[2])
    detectors[2] = ONet

mtcnn_detector = MtcnnDetector(detectors=detectors, min_face_size=min_face_size,
                               stride=stride, threshold=thresh)
out_path=config.out_path
if config.input_mode=='1':
    #选用图片
    path=config.test_dir
    #print(path)
    for item in os.listdir(path):
        img_path=os.path.join(path,item)
        img=cv2.imread(img_path)
        boxes_c,landmarks=mtcnn_detector.detect(img)
        for i in range(boxes_c.shape[0]):
            bbox=boxes_c[i,:4]
            score=boxes_c[i,4]
            corpbbox = [int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3])]
            #画人脸框
            cv2.rectangle(img, (corpbbox[0], corpbbox[1]),
                          (corpbbox[2], corpbbox[3]), (255, 0, 0), 1)
            #判别为人脸的置信度
            cv2.putText(img, '{:.2f}'.format(score), 
                       (corpbbox[0], corpbbox[1] - 2), 
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5,(0, 0, 255), 2)
        #画关键点
        for i in range(landmarks.shape[0]):
            for j in range(len(landmarks[i])//2):
                cv2.circle(img, (int(landmarks[i][2*j]),int(int(landmarks[i][2*j+1]))), 2, (0,0,255))   
        cv2.imshow('im',img)
        k = cv2.waitKey(0) & 0xFF
        if k == 27:        
            cv2.imwrite(out_path + item,img)
    cv2.destroyAllWindows()

if config.input_mode=='2':
    cap=cv2.VideoCapture(0)
    fourcc = cv2.VideoWriter_fourcc(*'XVID')
    out = cv2.VideoWriter(out_path+'out.mp4' ,fourcc,10,(640,480))
    while True:
            t1=cv2.getTickCount()
            ret,frame = cap.read()
            if ret == True:
                boxes_c,landmarks = mtcnn_detector.detect(frame)
                t2=cv2.getTickCount()
                t=(t2-t1)/cv2.getTickFrequency()
                fps=1.0/t
                for i in range(boxes_c.shape[0]):
                    bbox = boxes_c[i, :4]
                    score = boxes_c[i, 4]
                    corpbbox = [int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3])]
                
                    #画人脸框
                    cv2.rectangle(frame, (corpbbox[0], corpbbox[1]),
                          (corpbbox[2], corpbbox[3]), (255, 0, 0), 1)
                    #画置信度
                    cv2.putText(frame, '{:.2f}'.format(score), 
                                (corpbbox[0], corpbbox[1] - 2), 
                                cv2.FONT_HERSHEY_SIMPLEX,
                                0.5,(0, 0, 255), 2)
                    #画fps值
                cv2.putText(frame, '{:.4f}'.format(t) + " " + '{:.3f}'.format(fps), (10, 20),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 255), 2)
                #画关键点
                for i in range(landmarks.shape[0]):
                    for j in range(len(landmarks[i])//2):
                        cv2.circle(frame, (int(landmarks[i][2*j]),int(int(landmarks[i][2*j+1]))), 2, (0,0,255))  
                a = out.write(frame)
                cv2.imshow("result", frame)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
            else:
                break
    cap.release()
    out.release()
    cv2.destroyAllWindows()



你可能感兴趣的:(opencv,计算机视觉,人工智能)