PyTorch 之 rand() 与 randn() 函数

文章目录

  • `torch.rand()`
    • 示例:
  • `torch.randn()`
    • 示例:

当然,让我更详细地介绍 torch.rand()torch.randn(),以及它们在 PyTorch 中的用法。

torch.rand()

torch.rand(*sizes, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) 生成从均匀分布(在 0 到 1 之间)中抽样的随机数。

  • *sizes: 输出张量每个维度的大小。可以是整数序列或变量数量的参数。
  • out: 如果提供了,结果将被放入此张量。
  • dtype: 输出张量的所需数据类型。
  • layout: 输出张量的所需布局。
  • device: 输出张量的所需设备。
  • requires_grad: 如果为 True,生成的张量将具有 requires_grad 属性,设置为 True,允许进行自动微分。

示例:

import torch

# 生成一个2x3的张量,其中的元素是在0到1之间的随机值
随机张量 = torch.rand(2, 3)
print(随机张量)

torch.randn()

torch.randn(*sizes, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) 生成从均值为0,标准差为1的正态分布中抽样的随机数。

  • *sizes: 输出张量每个维度的大小。可以是整数序列或变量数量的参数。
  • out: 如果提供了,结果将被放入此张量。
  • dtype: 输出张量的所需数据类型。
  • layout: 输出张量的所需布局。
  • device: 输出张量的所需设备。
  • requires_grad: 如果为 True,生成的张量将具有 requires_grad 属性设置为 True,允许进行自动微分。

示例:

import torch

# 生成一个2x3的张量,其中的元素是从标准正态分布中抽样得到的随机值
正态随机张量 = torch.randn(2, 3)
print(正态随机张量)

这些函数在神经网络的权重初始化、为测试创建合成数据,以及任何需要随机数的场景中都很有用。根据你的具体用例调整大小和其他参数。

你可能感兴趣的:(python,pytorch,人工智能,python)