hive.optimize.cp=true:列裁剪
hive.optimize.prunner:分区裁剪
hive.limit.optimize.enable=true:优化LIMIT n语句
hive.limit.row.max.size=1000000:
hive.limit.optimize.limit.file=10:最大文件数
需要满足以下条件:
hive.exec.mode.local.auto.inputbytes.max=134217728
hive.exec.mode.local.auto.tasks.max=4
hive.exec.mode.local.auto=true
hive.mapred.local.mem:本地模式启动的JVM内存大小
hive.exec.parallel=true ,默认为false
hive.exec.parallel.thread.number=8
**hive.mapred.mode=true,**严格模式不允许执行以下查询:
hive.exec.dynamic.partition.mode=strict:该模式下必须指定一个静态分区
hive.exec.max.dynamic.partitions=1000
hive.exec.max.dynamic.partitions.pernode=100:在每一个mapper/reducer节点允许创建的最大分区数
DATANODE:dfs.datanode.max.xceivers=8192:允许DATANODE打开多少个文件
--动态分区属性:设置为true表示开启动态分区功能(默认为false)
hive.exec.dynamic.partition=true;
--动态分区属性:设置为nonstrict,表示允许所有分区都是动态的(默认为strict)
--设置为strict,表示必须保证至少有一个分区是静态的
hive.exec.dynamic.partition.mode=nonstrict;
--动态分区属性:每个mapper或reducer可以创建的最大动态分区个数
hive.exec.max.dynamic.partitions.pernode=100;
--动态分区属性:一个动态分区创建语句可以创建的最大动态分区个数
hive.exec.max.dynamic.partitions=1000;
--动态分区属性:全局可以创建的最大文件个数
hive.exec.max.created.files=100000;
--控制DataNode一次可以打开的文件个数
--这个参数必须设置在DataNode的$HADOOP_HOME/conf/hdfs-site.xml文件中
<property>
<name>dfs.datanode.max.xcievers</name>
<value>8192</value>
</property>
-目的:是通过加快获取单个task的结果以及进行侦测将执行慢的TaskTracker加入到黑名单的方式来提高整体的任务执行效率
mapred.map.tasks.speculative.execution=true
mapred.reduce.tasks.speculative.execution=true
hive.mapred.reduce.tasks.speculative.execution=true;
hive.multigroupby.singlemar=true:当多个GROUP BY语句有相同的分组列,则会优化为一个MR任务
--当hive产生了非预期的或null的时候,可以通过虚拟列进行诊断,判断哪行数据出现问题
INPUT__FILE__NAME (输入文件名)
BLOCK__OFFSET__INSIDE__FILE (块内偏移量)
ROW__OFFSET__INSIDE__BLOCK (行偏移量,需要设置hive.exec.rowoffset=true;启用)
示例:
SELECT
INPUT__FILE__NAME,
BLOCK__OFFSET__INSIDE__FILE,
ROW__OFFSET__INSIDE__BLOCK,
substr(regioncode,0,20)
FROM clickcube_mid
WHERE length(regioncode) > 100;
两个聚集函数不能有不同的DISTINCT列,以下表达式是错误的:
INSERT OVERWRITE TABLE pv_gender_agg SELECT pv_users.gender, count(DISTINCT pv_users.userid), count(DISTINCT pv_users.ip) FROM pv_users GROUP BY pv_users.gender;
SELECT语句中只能有GROUP BY的列或者聚集函数。
hive.map.aggr=true;在map中会做部分聚集操作,效率更高但需要更多的内存。
hive.groupby.mapaggr.checkinterval:在Map端进行聚合操作的条目数目
**hive.groupby.skewindata=true:**数据倾斜时负载均衡,当选项设定为true,生成的查询计划会有两个MRJob。第一个MRJob 中,
Map的输出结果集合会随机分布到Reduce中,每个Reduce做部分聚合操作,并输出结果,这样处理的结果是相同的GroupBy Key 有可能被分发到不同的Reduce中,从而达到负载均衡的目的;第二个MRJob再根据预处理的数据结果按照GroupBy Key分布到 Reduce中(这个过程可以保证相同的GroupBy Key被分布到同一个Reduce中),最后完成最终的聚合操作。
关系型数据库借鉴而来,关系型数据中谓词下推到外部数据库用以减少数据传输
基本思想:尽可能早的处理表达式
属于逻辑优化,优化器将谓词过滤下推到数据源,使物理执行跳过无关数据
参数打开设置:hive.optimize.ppd=true
set hive.cbo.enable=true;
set hive.compute.query.using.stats=true;
set hive.stats.fetch.column.stats=true;
set hive.stats.fetch.partition.stats=true;
hive.merg.mapfiles=true:合并map输出
hive.merge.mapredfiles=false:合并reduce输出
hive.merge.size.per.task=25610001000:合并文件的大小
hive.mergejob.maponly=true:如果支持CombineHiveInputFormat则生成只有Map的任务执行merge
hive.merge.smallfiles.avgsize=16000000:文件的平均大小小于该值时,会启动一个MR任务执行merge。
文件数目过多,会给 HDFS 带来压力,并且会影响处理效率,可以通过合并 Map 和 Reduce 的结果文件来消除这样的影响:
· hive.merge.mapfiles = true是否和并 Map 输出文件,默认为 True
· hive.merge.mapredfiles = false是否合并 Reduce 输出文件,默认为 False
· hive.merge.size.per.task = 25610001000合并文件的大小
减少map数目:
set mapred.max.split.size
set mapred.min.split.size
set mapred.min.split.size.per.node
set mapred.min.split.size.per.rack
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat
增加map数目:
当input的文件都很大,任务逻辑复杂,map执行非常慢的时候,可以考虑增加Map数,来使得每个map处理的数据量减少,从而提高任务的执行效率。
假设有这样一个任务:
select data_desc, count(1), count(distinct id),sum(case when …),sum(case when ...),sum(…) from a group by data_desc
如果表a只有一个文件,大小为120M,但包含几千万的记录,如果用1个map去完成这个任务,肯定是比较耗时的,这种情况下,我们要考虑将这一个文件合理的拆分成多个,这样就可以用多个map任务去完成。
set mapred.reduce.tasks=10;
create table a_1 as select * from a distribute by rand(123);
这样会将a表的记录,随机的分散到包含10个文件的a_1表中,再用a_1代替上面sql中的a表,则会用10个map任务去完成。每个map任务处理大于12M(几百万记录)的数据,效率肯定会好很多。
reduce数目设置:
参数1:hive.exec.reducers.bytes.per.reducer=1G:每个reduce任务处理的数据量
参数2:hive.exec.reducers.max=999(0.95TaskTracker数):每个任务最大的reduce数目
reducer数=min(参数2,总输入数据量/参数1)
set mapred.reduce.tasks:每个任务默认的reduce数目。典型为0.99reduce槽数,hive将其设置为-1,自动确定reduce数目。
hive.optimize.index.filter:自动使用索引
hive.optimize.index.groupby:使用聚合索引优化GROUP BY操作
Fetch 抓取是指,Hive 中对某些情况的查询可以不必使用 MapReduce 计算。例如:SELECT
优化使用:配置如下参数,使用mapjoin替代common join.当然这里因为group by的原因还是会启动reduce进行去重。一般来说小表join大表一般配置下面四个参数就差不多,当然官方还提供了其他的参数共配置。Hive官网参数配置
set hive.auto.convert.join = true ; -- hive是否自动根据文件量大小,选择将common join转成map join 。hive 0.10 版本后的默认值 true。
set hive.mapjoin.smalltable.filesize =25000000 ;大表小表判断的阈值,如果表的大小小于该值25Mb,则会被判定为小表。则会被加载到内存中运行,将commonjoin转化成mapjoin。一般这个值也就最多几百兆的样子。
set hive.auto.convert.join.noconditionaltask = true; 是否启用基于输入文件的大小,将普通连接转化为Map连接的优化机制。假设参与连接的表(或分区)有N个,如果打开这个参数,并且有N-1个表(或分区)的大小总和小于hive.auto.convert.join.noconditionaltask.size参数指定的值,那么会直接将连接转为Map连接。(说人话:默认值:true,当将普通的join转化为普通的mapjoin时,是否将多个mapjoin转化为一个mapjoin,主要针对多个小表join大表的情形)
![image.png](https://img-blog.csdnimg.cn/img_convert/837990689b2e3b1fdd7e94b3b241d342.png#clientId=u5bf32e96-8619-4&from=paste&id=u91969e9c&margin=[object Object]&name=image.png&originHeight=474&originWidth=1067&originalType=url&ratio=1&size=125504&status=done&style=none&taskId=u823644e2-7919-4b84-b0bf-7062f940611)
**Join查找操作的基本原则:**应该将条目少的表/子查询放在 Join 操作符的左边。原因是在 Join 操作的 Reduce 阶段,位于 Join 操作符左边的表的内容会被加载进内存,将条目少的表放在左边,可以有效减少发生内存溢出错误的几率。
Join查找操作中如果存在多个join,且所有参与join的表中其参与join的key都相同,则会将所有的join合并到一个mapred程序中。
案例:
SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1) 在一个mapre程序中执行join
SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key2) 在两个mapred程序中执行join
Map join的关键在于join操作中的某个表的数据量很小,案例:
SELECT /+ MAPJOIN(b) / a.key, a.value FROM a join b on a.key = b.key
Mapjoin 的限制是无法执行a FULL/RIGHT OUTER JOIN b,和map join相关的hive参数:
hive.join.emit.interval
hive.mapjoin.size.key
hive.mapjoin.cache.numrows
由于join操作是在where操作之前执行,所以当你在执行join时,where条件并不能起到减少join数据的作用;案例:
SELECT a.val, b.val FROM a LEFT OUTER JOIN b ON (a.key=b.key)
WHERE a.ds='2009-07-07' AND b.ds='2009-07-07'
最好修改为:
SELECT a.val, b.val FROM a LEFT OUTER JOIN b
ON (a.key=b.key AND b.ds='2009-07-07' AND a.ds='2009-07-07')
在join操作的每一个mapred程序中,hive都会把出现在join语句中相对靠后的表的数据stream化,相对靠前的变的数据缓存在内存中。当然,也可以手动指定stream化的表:SELECT /_+ STREAMTABLE(a) _/ a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1)
通过left outer join进行查询,(假设B表中包含另外的一个字段 key1
select a.key from a left outer join b on a.key=b.key where b.key1 is null
通过left semi join 实现 in
SELECT a.key, a.val FROM a LEFT SEMI JOIN b on (a.key = b.key)
Left semi join 的限制:join条件中右边的表只能出现在join条件中。
Hive支持在group by时对同一列进行多次distinct操作,却不支持在同一个语句中对多个列进行distinct操作。
UDTF将单一输入行转化为多个输出行,并且在使用UDTF时,select语句中不能包含其他的列,UDTF不支持嵌套,也不支持group by 、sort by等语句。如果想避免上述限制,需要使用lateral view语法,案例:
select a.timestamp, get_json_object(a.appevents, '.eventname') from log a;
select a.timestamp, b.*
from log a lateral view json_tuple(a.appevent, 'eventid', 'eventname') b as f1, f2;
其中,get_json_object为UDF函数,json_tuple为UDTF函数。
UDTF函数在某些应用场景下可以大大提高hql语句的性能,如需要多次解析json或者xml数据的应用场景。
Count和sum函数可能是在hql语句中使用的最为频繁的两个聚合函数了,但是在hive中count函数在计算distinct value时支持加入条件过滤。
Map端聚合,首先在map端进行初步聚合,最后在reduce端得出最终结果,相关参数:
· hive.map.aggr = true是否在 Map 端进行聚合,默认为 True
· hive.groupby.mapaggr.checkinterval = 100000在 Map 端进行聚合操作的条目数目
数据倾斜聚合优化,设置参数hive.groupby.skewindata = true,当选项设定为 true,生成的查询计划会有两个 MR Job。第一个 MR Job 中,Map 的输出结果集合会随机分布到 Reduce 中,每个 Reduce 做部分聚合操作,并输出结果,这样处理的结果是相同的 Group By Key 有可能被分发到不同的 Reduce 中,从而达到负载均衡的目的;第二个 MR Job 再根据预处理的数据结果按照 Group By Key 分布到 Reduce 中(这个过程可以保证相同的 Group By Key 被分布到同一个 Reduce 中),最后完成最终的聚合操作。
**注意事项:**在使用自定义的mapred脚本时,关键字MAP REDUCE 是语句SELECT TRANSFORM ( … )的语法转换,并不意味着使用MAP关键字时会强制产生一个新的map过程,使用REDUCE关键字时会产生一个reduce过程。
自定义的mapred脚本可以是hql语句完成更为复杂的功能,但是性能比hql语句差了一些,应该尽量避免使用,如有可能,使用UDTF函数来替换自定义的mapred脚本