- ARM Cortex-M4 CPU指令大全:作用、原理与实例
TheJustice_
ARM微机原理arm开发
引言在计算机系统中,CPU(中央处理器)是执行各种指令的核心部件。ARMCortex-M4是广泛应用于嵌入式系统中的一款处理器,其指令集架构(ISA)基于ARMv7-M。本文将介绍ARMCortex-M4处理器中的常见指令,包括它们的作用、工作原理,并通过具体例子帮助理解。1.数据传输指令1.1MOV作用:将数据从一个位置传输到另一个位置。原理:MOV指令复制数据,不改变数据源,只是在目标位置存储
- 学习STM32的USB通信
MyM满满
学习stm32嵌入式硬件
STM32是一款广泛应用于嵌入式系统开发的微控制器系列,其具备丰富的外设和强大的计算能力。其中USB通信作为一种常见的外设通信方式,广泛应用于各类嵌入式系统中,特别是在PC与嵌入式设备之间的数据传输和通信中。本文将详细介绍STM32的USB通信的相关知识,并通过代码案例来演示如何在STM32中实现USB通信。一、STM32USB通信的基础知识USB协议简介USB(UniversalSerialBu
- 大语言模型原理与工程实践:预训练数据构建
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:预训练数据构建1.背景介绍大语言模型(LargeLanguageModels,LLMs)近年来在自然语言处理(NLP)领域取得了显著的进展。诸如GPT-3、BERT等模型在各种任务中表现出色,从文本生成到情感分析,再到机器翻译,几乎无所不能。这些模型的成功很大程度上依赖于预训练数据的质量和规模。预训练数据的构建不仅影响模型的性能,还决定了模型的泛化能力和应用范围。在本文中
- 大语言模型原理与工程实践:网页数据
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:网页数据1.背景介绍在当今信息爆炸的时代,网页数据成为了大数据的重要来源之一。网页数据不仅包含了丰富的文本信息,还包括了图像、视频、音频等多媒体内容。大语言模型(LargeLanguageModels,LLMs)作为自然语言处理(NLP)领域的前沿技术,能够从海量的网页数据中提取有价值的信息,进行文本生成、情感分析、问答系统等多种任务。大语言模型的成功离不开深度学习技术的
- 大语言模型原理与工程实践:案例介绍
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:案例介绍作者:禅与计算机程序设计艺术近年来,随着深度学习技术的快速发展,大语言模型(LargeLanguageModel,LLM)在自然语言处理领域取得了突破性进展,展现出强大的文本生成、理解和推理能力。从智能对话到机器翻译,从代码生成到诗歌创作,LLM正在深刻地改变着我们与信息交互的方式,并为人工智能应用开拓了更广阔的空间。1.背景介绍1.1大语言模型的兴起大语言模型的
- root卡刷与线刷
王景程
github编辑器windows
什么是Root中的卡刷和线刷?在Android设备中,卡刷和线刷是两种常见的刷机方式,主要用于安装自定义ROM、获取Root权限或恢复系统。1.卡刷(刷ZIP文件)卡刷是通过将刷机包(通常是一个ZIP文件)放置在设备的存储中,然后通过设备的Recovery模式加载和安装该刷机包的方式。优势:操作简单,不需要连接电脑。更适合OTA更新和安装自定义ROM。不容易误操作导致设备损坏。劣势:如果设备无法进
- 线性查找与哨兵查找法
雾里看山
C语言c语言笔记开发语言数据结构
当我们在编写程序时,经常需要找寻一个数组或者字符串中某个元素的下标,本篇文章就对如何用最简单的方法找到该元素的下标进行了讲解。目录线性查找(顺序查找)简介代码实现哨兵查找法简介代码实现特别注意线性查找(顺序查找)简介当我们需要找寻数组(字符串)中的目标元素的下标(位置)的时候,通常说要遍历整个数组(字符串)即可,此处提到的遍历,就是进行的线性查找,其过程就是按照顺序从头至尾按照下标依次寻找,直至找
- Kafka 入门与应用实战:吞吐量优化与与 RabbitMQ、RocketMQ 的对比
小白的一叶扁舟
Java开发kafkarabbitmqrocketmqspringbootjava
前言在现代微服务架构和分布式系统中,消息队列作为解耦组件,承担着重要的职责。它不仅提供了异步处理的能力,还能确保系统的高可用性、容错性和扩展性。常见的消息队列包括Kafka、RabbitMQ和RocketMQ,其中Kafka因其高吞吐量、分布式特性和可靠性成为大规模数据流处理的首选。本篇文章将深入介绍Kafka的基本概念、执行流程、吞吐量优化策略、生命周期,重点对比Kafka与RabbitMQ和R
- 2025毕设springboot 基于web的电商后台管理系统的设计与实现论文+源码
zhihao503
课程设计springboot前端
本系统(程序+源码)带文档lw万字以上文末可获取一份本项目的java源码和数据库参考。系统程序文件列表开题报告内容研究背景随着互联网技术的飞速发展和普及,电子商务已成为现代商业的重要组成部分。电商平台作为连接消费者与商家的桥梁,其后台管理系统的设计与实现直接关系到平台的运营效率和用户体验。当前,电商行业竞争激烈,用户对平台的稳定性、响应速度以及商品信息的准确性和丰富性有着越来越高的要求。因此,设计
- HMI设计十-cybertruck-QPainter径向渐变圆与阴影流动设计
william_myq
HMIQTUIQPainter
如何构建图示点阵背景可以参考本栏同刊HMI设计九-cybertruck-QPainter复杂油门刹车滑动块设计-CSDN博客本文目标如何构建QPainter阴影流动设计如何构建径向渐变阴影圆如何营造阴影流动效果如何构建径向渐变阴影圆使用ShapePath中的PathArc构建两个半圆组成一个圆用fillGradient来使能相应的渐变效果,可以支持线性,径向渐变//Circle.qml定义一个圆形
- Java基础——数据类型(种类、包装类型、缓存机制、装拆箱、精度丢失)
Camel卡蒙
Java基础java缓存python
我是一个计算机专业研0的学生卡蒙Camel(刚保研)记录每天学习过程(主要学习Java、python、人工智能),总结知识点(内容来自:自我总结+网上借鉴)希望大家能一起发现问题和补充,也欢迎讨论文章目录Java数据类型数据类型种类包装类型和基本类型包装类型的缓存机制装箱与拆箱BigDecimal精度丢失问题使用BigDecimal解决Java数据类型数据类型种类Java有8大基本数据类型:类型关
- Grafana
小馋喵知识杂货铺
性能grafana
Grafana是一款广泛使用的开源数据可视化与监控平台,通过与Prometheus、InfluxDB、Elasticsearch等多种数据源集成,提供强大的监控、数据展示和告警功能。其告警体系在及时通知系统异常、保障业务稳定性方面起到关键作用。Grafana告警体系概述Grafana的告警体系分为以下几个部分:告警规则:用于定义何时触发告警,包括监控指标、评估条件和评估时间间隔。告警规则可以基于面
- 大型集团企业IT信息化(管理架构、应用架构、技术架构)战略规划方案
公众号:优享智库
数字化转型数据治理主数据数据仓库架构微服务数据挖掘大数据人工智能
集团企业IT信息化(管理架构、应用架构、技术架构)战略规划方案IT信息化现状及需求分析集团企业业务概况与发展趋势现有IT基础设施及应用系统评估业务流程优化与整合需求信息安全与风险管理要求管理架构规划与设计组织结构调整与优化建议岗位职责划分与协作机制建立决策支持体系构建及实施策略持续改进机制设置和监控指标应用架构规划与实施策略核心应用系统选型及部署方案数据集成、共享和交换平台设计业务流程自动化、智能
- 企业IT信息化架构与数字化转型建设方案
公众号:优享智库
数字化转型数据治理主数据数据仓库架构数据库
企业IT信息化架构与数字化转型建设方案企业IT信息化架构与数字化转型建设方案企业信息化现状与挑战现有信息化水平分析面临的主要问题与挑战数字化转型需求与迫切性IT信息化架构设计原则与目标设计原则及指导思想架构目标与战略定位关键技术选型及依据数字化转型战略规划与实施路径战略规划制定过程及内容实施路径选择与时间节点安排风险评估与应对措施基础设施建设与优化方案硬件设备选型及配置方案软件系统部署及集成策略网
- mysql内外三种连接,MySQL内连接和外连接
LiuYanagi
mysql内外三种连接
INNERJOIN(内连接,或等值连接):获取两个表中字段匹配关系的记录。LEFTJOIN(左连接):获取左表所有记录,即使右表没有对应匹配的记录。RIGHTJOIN(右连接):与LEFTJOIN相反,用于获取右表所有记录,即使左表没有对应匹配的记录。MySQL内连接(innerjoinon)MySQL的内连接使用innerjoinon,它的效果跟使用where是一样的,如果联结的是两个表,那么需
- Docker免费空间申请-使用DaoCloud一键搭建Wordpress/Ghost博客
weixin_33842328
运维
零成本,免费空间,直接使用当今最火的Docker搭建Wordpress/Ghost博客,不用学习docker,可以一键搭建。Docker的热门同样在国内也催生了众多的基于了Docker技术的服务,本文要介绍的DaoCloud就是一家采用Docker轻量级虚拟化平台,DaoCloud支持持续集成、镜像构建和云端容器托管,与Github、Bitbucket、Coding、GitCafe等都有合作,实现
- AI驱动电商搜索导购:技术创新与应用
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
文章标题《AI驱动电商搜索导购:技术创新与应用》关键词:人工智能,电商搜索导购,机器学习,深度学习,推荐系统,自然语言处理,个性化搜索,图像识别,应用案例,未来展望。摘要:本文旨在探讨人工智能(AI)在电商搜索导购领域的应用,分析其技术创新和实际应用案例,探讨AI驱动电商搜索导购的未来发展趋势。文章首先介绍了AI在电商搜索导购中的角色和优势,然后深入探讨了AI基础理论和搜索导购技术原理。接着,文章
- 云计算运维工程师面试
道亦无名
面试云计算运维
1.云计算运维工程师的角色和职责是什么?回答:云计算运维工程师负责确保云计算环境(包括硬件和软件系统)的高可用性和稳定性。他们的主要职责包括:监测系统和应用程序的性能,确保它们正常运行。故障排除,快速响应并解决系统或应用程序中出现的问题。容量规划,根据业务需求预测和规划未来的资源需求。升级和维护操作系统、应用程序及相关的基础设施。与开发团队紧密合作,确保新功能的顺利部署和现有功能的持续优化。2.请
- 【面试系列】DevOps工程师高频面试题及详细解答
野老杂谈
全网最全IT公司面试宝典面试devops职场和发展
欢迎来到我的博客,很高兴能够在这里和您见面!欢迎订阅相关专栏:公众号:野老杂谈⭐️全网最全IT互联网公司面试宝典:收集整理全网各大IT互联网公司技术、项目、HR面试真题.⭐️AIGC时代的创新与未来:详细讲解AIGC的概念、核心技术、应用领域等内容。⭐️全流程数据技术实战指南:全面讲解从数据采集到数据可视化的整个过程,掌握构建现代化数据平台和数据仓库的核心技术和方法。文章目录常见的初级面试题1.什
- 利用MediaWikiDump解析和处理Wiki数据
srudfktuffk
python
MediaWikiXMLDumps包含了Wiki页面及其所有修订的内容,但不包括与站点相关的数据,比如用户帐户、图像和编辑日志。因此,虽然它们没有创建Wiki数据库的完整备份,却在处理Wiki内容时具有独特的价值。技术背景介绍MediaWiki是许多Wiki(例如Wikipedia)后台的开源软件。使用MediaWikiXMLDumps,你可以获得Wiki页面的详细修订历史记录。这在数据分析和内容
- 抖音算法:信息茧房的真相与AI代码生成器的助力
前端
近年来,抖音的推荐算法备受争议,引发了公众对“信息茧房”的广泛关注。抖音集团副总裁李亮近日接受采访,就抖音算法的运作机制和“信息茧房”问题发表了独到见解。他认为,抖音算法并非神秘莫测,其核心原理与业界普遍使用的算法并无本质区别,关键在于平台的目标和用户体验的侧重点。这也引出了一个关键问题:如何利用技术手段,例如AI代码生成器,来优化算法,提升用户体验,并最终打破“信息茧房”的困局?抖音算法:长期留
- 500人规模的企业CRM系统选型推荐
在当今竞争激烈的商业环境中,客户关系管理(CRM)对于企业的生存与发展起着至关重要的作用。尤其对于500人规模的中型企业而言,如何高效地管理客户资源、提升销售业绩、优化客户服务已成为企业战略布局中的关键环节。CRM系统作为企业实现这些目标的有力工具,其选型的恰当与否直接影响到企业在市场中的竞争力与运营效率。因此,本文深入分析500人中型企业对CRM的需求,并准确推荐合适的CRM系统,为企业主选型提
- WebRover :一个功能强大的 Python 库,用于从 Web 内容生成高质量的数据集。
数据集
2024-11-30,由Area-25团队开发的一个专门用于生成高质量网络内容数据集的Python库。该数据集旨在为大型语言模型(LLM)和人工智能应用的训练提供丰富的数据资源。数据集地址:WebRoverDataset|自然语言处理数据集|AI模型训练数据集一、让我们一起来看一下WebRoverWebRover通过智能网络爬虫技术,自动从网络中提取与特定主题相关的内容,并支持多种输入格式,如JS
- MySQL学习笔记(8)--连接查询
绿皮豚二号
MySQLmysql数据库
·概念将多张表连在一起查询(会导致记录数行和字段数列发生改变)意义:在关系型数据库设计过程中,实体与实体之间是存在很多联系的。在关系型数据库表的设计过程中,遵循着关系来设计:一对一,一对多,多对多。通常在实际操作中,需要利用这层关系来保证数据的完整性。·交叉连接将两张表的数据与另外一张表彼此交叉(笛卡尔积)表1crossjoin表2--实例select*frommy_studentcrossjoi
- 东野圭吾读书笔记 —— 新参者
蜡笔小新..
读点小书东野圭吾新参者
假期重新读一读之前的书,做一点记录。故事始于充满传统风情的日本桥地区,甘酒横丁商业街附近的小传马町公寓。一位刚搬来不久的独居女子三井峰子在家中惨遭勒杀。刚刚调任到此地的刑警加贺恭一郎接手了这起案件。他通过调查商业街上与峰子有过交集的商户,逐步揭开案件的真相。被害人三井峰子家中的线索:半年前离婚后开始独居,有一个离家出走的儿子清濑弘毅,母子俩几乎不见面。刚搬来日本桥不久,于6月10日晚7点左右被勒杀
- 抖音算法:信息茧房的真相与AI代码生成器的助力
前端
近年来,抖音的推荐算法备受争议,引发了公众对“信息茧房”的广泛关注。抖音集团副总裁李亮近日接受采访,就抖音算法的运作机制和“信息茧房”问题发表了独到见解。他认为,抖音算法并非神秘莫测,其核心原理与业界普遍使用的算法并无本质区别,关键在于平台的目标和用户体验的侧重点。这也引出了一个关键问题:如何利用技术手段,例如AI代码生成器,来优化算法,提升用户体验,并最终打破“信息茧房”的困局?抖音算法:长期留
- Azure AI-102 认证全攻略: (二十二) AI的隐私与安全
海棠AI实验室
AI-102认证考试全攻略azure人工智能安全microsoftAI-102
引言:AI隐私与安全的重要性随着人工智能技术的飞速发展,数据隐私和安全问题已成为一个亟需解决的挑战。AI系统往往需要处理大量的敏感数据,这些数据的泄露或滥用不仅会对个人隐私产生严重影响,还可能对企业的声誉和信任度造成灾难性的损害。因此,在AI领域中,隐私与安全的保护已经成为设计和实施AI解决方案时必须严格遵守的基本原则。随着全球隐私保护法规的日益完善,如欧洲的《通用数据保护条例》(GDPR)和加利
- OpenCV相机标定与3D重建(64)用于迭代地优化图像点的位置函数undistortImagePoints()的使用
jndingxin
OpenCVopencv人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述计算无畸变图像点的位置。cv::undistortImagePoints这个函数用于迭代地优化图像点的位置,以补偿镜头畸变,并且允许指定终止条件来控制迭代过程。函数原型voidcv::undistortImagePoints(InputArraysrc,Outpu
- OpenCV相机标定与3D重建(65)对图像点进行去畸变处理函数undistortPoints()的使用
jndingxin
OpenCVopencv
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述从观测到的点坐标计算理想点坐标。该函数类似于undistort和initUndistortRectifyMap,但它操作的是稀疏点集而不是光栅图像。此外,该函数执行与projectPoints相反的变换。对于3D对象,它不会重建其3D坐标;但对于平面对象,如果指定
- OpenCV相机标定与3D重建(66)对立体匹配生成的视差图(disparity map)进行验证的函数validateDisparity()的使用
jndingxin
OpenCVopencv3d
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述使用左右检查来验证视差。矩阵“cost”应该由立体对应算法计算。cv::validateDisparity函数是OpenCV库中用于对立体匹配生成的视差图(disparitymap)进行后处理的一个工具。其主要功能是对计算出的视差值进行验证,确保相邻像素间的视差值
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理