信道上传输的信号除了可以分为数字信号和模拟信号,也可以分为基带信号和宽带信号,只是分类标准不同而已
基带信号:指未经过调制的原始电信号,或者说来自信源,其可以为数字信号也可以为模拟信号
基带传输:通过数字信道上传输就是基带传输(传输的一般是数字信号)
宽带信号:基带信号调制后信号频率变高即宽带信号(调制后以放到复杂危险的信道上传输,如声音通过话筒调制发出,声音的频率提高,从而能够应对各种信号的干扰,使得最后接收端能够过滤出开始的基带信号)
宽带传输:通过模拟信道上传输就是宽带传输
衰减就是信号干扰导致的,一般基带信号频率较低,从零频附近开始。所以如果衰减过大可能直接消失没有了。所以近距离
无法判断一个码元的开始和结束,因为不知道码元长度,所以没有信号变化不能区分是一个码元还是多个码元。
所以还需要建立一条信道来告诉对方开始接收,并接收多久作为一个码元。以此来建立同步。(即时钟信号)
建立同步比较麻烦,所以用的比较少
归零编码:每个码元都要最后是归零的信号
信道中零信号的比较多,相当于信道用的比较少(零信号此时信道没有传输的),所以也不推荐使用
反向不归零编码
全零一直翻转,此时接收信号是一直变化的,能区分不同码元所以很好接收,全一一直不变,接收端接收的信号是不变的,不知道接收了多少个码元。此时还是需要建立一条信道传输确定接收(即时钟信号)
曼彻斯特编码
跳变作为时钟信号即此时每发送一个码元都会跳变一次,接收方即可知道此时发送了一个码元,然后根据跳变前后信号得出其对应的信号
每个原始码元被分为两个部分,低电平和高电平两个码元,此时频率增加为原来两倍,对应的频率范围也变为原来两倍,所以说频带宽度为原始的基带宽度的两倍
码元宽度是指传输一个码元所需的时间长度,而频带宽度和基带宽度是指信号所占用的频率范围
基带宽度和频带宽度是通信系统中的两个重要概念,它们代表了不同类型的信号传输方式和系统设计参数。具体如下:
曼彻斯特编码的频带宽度是原始基带宽度的两倍,这是因为曼彻斯特编码本身的特性导致的。
总的来说,曼彻斯特编码通过在每个数据位上增加额外的跳变,确实增加了所需的频带宽度,但同时也提供了其他的优势,如自同步能力和抗干扰性。
调制速率即调制后发送的信号码元速率,此时原来的一个码元(一个数据)对应的调制速率为两个码元(两个信号变化)
即两个码元一个比特(比特是原来的码元)
差分曼彻斯特编码跳变作为时钟信号即知道此时变化了一次,将区分为两个码元
抗干扰性:实现算法更复杂
注意当前码元的后半个电平和码元信号一样
·
4B/5B编码
插入一个bit来编码
调幅:如0没有幅度振幅,1有幅度振幅
调频:同样时间内波形个数
调相:0和1对应的波形不同(正弦和余弦)
相位是用于描述周期性运动或现象在一个周期内的位置。
相当于4种波形,每种波形的幅度 有4种 ,所以对应的码元信号类型有16种
采样定理:任何模拟信号都是一系列正弦波组成
量化:抽样的点按照分级标准来得到其整数值
频率是指单位时间内周期性变化的次数,通常用赫兹(Hz)来表示。
采样频率越高,恢复的波形会更准确
类似从采样的点求正弦或余弦函数,如果频率是两倍,那么正好可以四分之一个周期采点,恢复的波形比较完善,如果是频率和原来一样,那么采集到的点无法区分波形
准确来说是放大调制,因为调制成的模拟信号可能传输过程有些损耗,所以需要放大,提高频率
模拟数据调制为模拟信号的过程涉及到将原始的模拟信息(如声音或图像)通过特定的技术手段,与一个高频的载波信号相结合,从而实现信号的有效传输。具体如下: