八位桶式移位寄存器的VHDL实现如下,由于每一层结构相似,于是采用生成语句for_generate实现,使用该代码实现的RTL级分析和理论的结构一致,仿真结果也符合预期。
entity barrel_shift is
GENERIC(DATA_WIDTH: INTEGER:=8;
CTRL_WIDTH: INTEGER:=3);
Port (DATA_IN: IN STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);
CTRL: IN STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);
DATA_OUT: OUT STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0)
);
end barrel_shift;
architecture Behavioral of barrel_shift is
SIGNAL LAYER_1_TEMP: STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);
SIGNAL LAYER_2_TEMP: STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);
SIGNAL LAYER_3_TEMP: STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);
begin
LAYER_1:FOR I IN 0 TO 7 GENERATE
G1:IF I<=3 GENERATE
LAYER_1_TEMP(I)<=DATA_IN(I)WHEN CTRL(2)='0'ELSE DATA_IN(I+4);
END GENERATE G1;
G2:IF I>3 GENERATE
LAYER_1_TEMP(I)<=DATA_IN(I)WHEN CTRL(2)='0'ELSE DATA_IN(I-4);
END GENERATE G2;
END GENERATE LAYER_1;
LAYER_2:FOR I IN 0 TO 7 GENERATE
G3:IF I<=5 GENERATE
LAYER_2_TEMP(I)<=LAYER_1_TEMP(I)WHEN CTRL(1)='0'ELSE LAYER_1_TEMP(I+2);
END GENERATE G3;
G4:IF I>5 GENERATE
LAYER_2_TEMP(I)<=LAYER_1_TEMP(I)WHEN CTRL(1)='0'ELSE LAYER_1_TEMP(I-6);
END GENERATE G4;
END GENERATE LAYER_2;
LAYER_3:FOR I IN 0 TO 7 GENERATE
G5:IF I<=6 GENERATE
LAYER_3_TEMP(I)<=LAYER_2_TEMP(I)WHEN CTRL(0)='0'ELSE LAYER_2_TEMP(I+1);
END GENERATE G5;
G6:IF I>6 GENERATE
LAYER_3_TEMP(I)<=LAYER_2_TEMP(I)WHEN CTRL(0)='0'ELSE LAYER_2_TEMP(I-7);
END GENERATE G6;
END GENERATE LAYER_3;
DATA_OUT<=LAYER_3_TEMP;
end Behavioral;
该网络的VHDL代码和RTL分析如下
entity LSN_9x8_network is
GENERIC(DATA_WIDTH: INTEGER:=9;
CTRL_WIDTH: INTEGER:=4);
Port (DATA_IN: IN STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);
LSN_CTRL: IN STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);
DATA_OUT: OUT STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0)
);
end LSN_9x8_network;
architecture Behavioral of LSN_9x8_network is
SIGNAL LAYER_1_TEMP: STD_LOGIC_VECTOR(DATA_WIDTH-9 DOWNTO 0);
SIGNAL LAYER_2_TEMP: STD_LOGIC_VECTOR(DATA_WIDTH-5 DOWNTO 0);
SIGNAL LAYER_3_TEMP: STD_LOGIC_VECTOR(DATA_WIDTH-3 DOWNTO 0);
SIGNAL LAYER_4_TEMP: STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0);
begin
LAYER_1:FOR I IN 0 TO 0 GENERATE
G1:IF I=0 GENERATE
LAYER_1_TEMP(I)<=DATA_IN(I)WHEN LSN_CTRL(3)='0'ELSE DATA_IN(I+8);
END GENERATE G1;
END GENERATE LAYER_1;
LAYER_2:FOR I IN 0 TO 4 GENERATE--5
G2:IF I=0 GENERATE
LAYER_2_TEMP(I)<=LAYER_1_TEMP(I)WHEN LSN_CTRL(2)='0'ELSE DATA_IN(I+4);
END GENERATE G2;
G3:IF I>0 GENERATE
LAYER_2_TEMP(I)<=DATA_IN(I) WHEN LSN_CTRL(2)='0'ELSE DATA_IN(I+4);
END GENERATE G3;
END GENERATE LAYER_2;
LAYER_3:FOR I IN 0 TO 6 GENERATE--7
G4:IF I<=2 GENERATE
LAYER_3_TEMP(I)<=LAYER_2_TEMP(I)WHEN LSN_CTRL(1)='0'ELSE LAYER_2_TEMP(I+2);
END GENERATE G4;
G5:IF I>2 AND I<=4 GENERATE
LAYER_3_TEMP(I)<=LAYER_2_TEMP(I)WHEN LSN_CTRL(1)='0'ELSE DATA_IN(I+2);
END GENERATE G5;
G6:IF I>4 GENERATE
LAYER_3_TEMP(I)<=DATA_IN(I) WHEN LSN_CTRL(0)='0'ELSE DATA_IN(I+2);
END GENERATE G6;
END GENERATE LAYER_3;
LAYER_4:FOR I IN 0 TO 7 GENERATE---8
G7:IF I<=5 GENERATE
LAYER_4_TEMP(I)<=LAYER_3_TEMP(I)WHEN LSN_CTRL(0)='0'ELSE LAYER_3_TEMP(I+1);
END GENERATE G7;
G8:IF I=6 GENERATE
LAYER_4_TEMP(I)<=LAYER_3_TEMP(I)WHEN LSN_CTRL(0)='0'ELSE DATA_IN(I+1);
END GENERATE G8;
G9:IF I>6 GENERATE
LAYER_4_TEMP(I)<=DATA_IN(I) WHEN LSN_CTRL(0)='0'ELSE DATA_IN(I+1);
END GENERATE G9;
END GENERATE LAYER_4;
DATA_OUT<=LAYER_4_TEMP(DATA_WIDTH-2 DOWNTO 0);
end Behavioral;
9x9的右移网络的VHDL实现和RTL分析如下
entity RSN_9x9_network is
GENERIC(DATA_WIDTH: INTEGER:=9;
CTRL_WIDTH: INTEGER:=4);
Port (DATA_IN: IN STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);
RSN_CTRL: IN STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);
DATA_OUT: OUT STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0)
);
end RSN_9x9_network;
architecture Behavioral of RSN_9x9_network is
COMPONENT LSN_9x8_network IS
GENERIC(DATA_WIDTH: INTEGER:=9;
CTRL_WIDTH: INTEGER:=4);
Port (
DATA_IN: IN STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);
LSN_CTRL: IN STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);
DATA_OUT: OUT STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0)
);
END COMPONENT;
begin
LSN_9X8:LSN_9x8_network
GENERIC MAP(
DATA_WIDTH => DATA_WIDTH,
CTRL_WIDTH => CTRL_WIDTH
)
PORT MAP(
DATA_IN(0) => DATA_IN(8),
DATA_IN(1) => DATA_IN(7),
DATA_IN(2) => DATA_IN(6),
DATA_IN(3) => DATA_IN(5),
DATA_IN(4) => DATA_IN(4),
DATA_IN(5) => DATA_IN(3),
DATA_IN(6) => DATA_IN(2),
DATA_IN(7) => DATA_IN(1),
DATA_IN(8) => DATA_IN(0),
LSN_CTRL => RSN_CTRL,
DATA_OUT(0) => DATA_OUT(8),
DATA_OUT(1) => DATA_OUT(7),
DATA_OUT(2) => DATA_OUT(6),
DATA_OUT(3) => DATA_OUT(5),
DATA_OUT(4) => DATA_OUT(4),
DATA_OUT(5) => DATA_OUT(3),
DATA_OUT(6) => DATA_OUT(2),
DATA_OUT(7) => DATA_OUT(1)
);
DATA_OUT(0) <= DATA_IN(0);
end Behavioral;
entity MN_9x9_network is
GENERIC(DATA_WIDTH: INTEGER:=9);
Port (LSN_DATA_IN: IN STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0);
RSN_DATA_IN: IN STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);
M_CTRL: IN STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0);
DATA_OUT: OUT STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0)
);
end MN_9x9_network;
architecture Behavioral of MN_9x9_network is
begin
G1:FOR I IN 0 TO DATA_WIDTH-2 GENERATE
DATA_OUT(I)<=RSN_DATA_IN(I) WHEN M_CTRL(I)='0' ELSE LSN_DATA_IN(I);
END GENERATE G1;
DATA_OUT(8)<='0' WHEN FALSE ELSE RSN_DATA_IN(8);
end Behavioral;
控制模块的VHDL实现和仿真波形图如下
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity CTRL is
GENERIC(DATA_WIDTH: INTEGER:=9;
CTRL_WIDTH: INTEGER:=4);
Port (CLK: IN STD_LOGIC;
RST_N: IN STD_LOGIC;
EN: IN STD_LOGIC;
SHIFT_NUM: IN STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);
M: OUT STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0);
LSN_SHIFT: OUT STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);
RSN_SHIFT: OUT STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);
VALID: OUT STD_LOGIC
);
end CTRL;
architecture Behavioral of CTRL is
begin
LSN_SHIFT_GE:PROCESS(CLK,RST_N)
BEGIN
IF RST_N='0'THEN
LSN_SHIFT<=(OTHERS=>'0');
ELSIF RISING_EDGE(CLK) THEN
IF EN='1'THEN
LSN_SHIFT<=SHIFT_NUM;
END IF;
END IF;
END PROCESS;
RSN_SHIFT_GE:PROCESS(CLK,RST_N)
BEGIN
IF RST_N='0'THEN
RSN_SHIFT<=(OTHERS=>'0');
ELSIF RISING_EDGE(CLK) THEN
IF EN='1'THEN
RSN_SHIFT<=9-SHIFT_NUM;
END IF;
END IF;
END PROCESS;
M_GE:PROCESS(CLK,RST_N)
BEGIN
IF RST_N='0'THEN
M<=(OTHERS=>'0');
ELSIF RISING_EDGE(CLK) THEN
IF EN='1'THEN
IF SHIFT_NUM>=9 THEN M(0)<='0';ELSE M(0)<='1';END IF;
IF SHIFT_NUM>=8 THEN M(1)<='0';ELSE M(1)<='1';END IF;
IF SHIFT_NUM>=7 THEN M(2)<='0';ELSE M(2)<='1';END IF;
IF SHIFT_NUM>=6 THEN M(3)<='0';ELSE M(3)<='1';END IF;
IF SHIFT_NUM>=5 THEN M(4)<='0';ELSE M(4)<='1';END IF;
IF SHIFT_NUM>=4 THEN M(5)<='0';ELSE M(5)<='1';END IF;
IF SHIFT_NUM>=3 THEN M(6)<='0';ELSE M(6)<='1';END IF;
IF SHIFT_NUM>=2 THEN M(7)<='0';ELSE M(7)<='1';END IF;
END IF;
END IF;
END PROCESS;
VALID_GE:PROCESS(CLK,RST_N)
BEGIN
IF RST_N='0'THEN
VALID<='0';
ELSIF RISING_EDGE(CLK) THEN
IF EN='1'THEN
VALID<='1';
ELSE
VALID<='0';
END IF;
END IF;
END PROCESS;
end Behavioral;
顶层的作用是将子模块例化,VHDL实现和RTL分析如下
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity QSN_9x9_network is
GENERIC(DATA_WIDTH: INTEGER:=9;
CTRL_WIDTH: INTEGER:=4);
Port (CLK: IN STD_LOGIC;
RST_N: IN STD_LOGIC;
EN: IN STD_LOGIC;
SHIFT_NUM: IN STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);
DATA_IN: IN STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);
DATA_OUT: OUT STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);
VALID: OUT STD_LOGIC
);
end QSN_9x9_network;
architecture Behavioral of QSN_9x9_network is
COMPONENT LSN_9x8_network IS
GENERIC(DATA_WIDTH: INTEGER:=9;
CTRL_WIDTH: INTEGER:=4);
Port (
DATA_IN: IN STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);
LSN_CTRL: IN STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);
DATA_OUT: OUT STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0)
);
END COMPONENT;
COMPONENT RSN_9x9_network IS
GENERIC(DATA_WIDTH: INTEGER:=9;
CTRL_WIDTH: INTEGER:=4);
Port (
DATA_IN: IN STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);
RSN_CTRL: IN STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);
DATA_OUT: OUT STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0)
);
END COMPONENT;
COMPONENT MN_9x9_network IS
GENERIC(DATA_WIDTH: INTEGER:=9);
Port (
LSN_DATA_IN: IN STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0);
RSN_DATA_IN: IN STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);
M_CTRL: IN STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0);
DATA_OUT: OUT STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0)
);
END COMPONENT;
COMPONENT CTRL IS
GENERIC(DATA_WIDTH: INTEGER:=9;
CTRL_WIDTH: INTEGER:=4);
Port (
CLK: IN STD_LOGIC;
RST_N: IN STD_LOGIC;
EN: IN STD_LOGIC;
SHIFT_NUM: IN STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);
M: OUT STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0);
LSN_SHIFT: OUT STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);
RSN_SHIFT: OUT STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);
VALID: OUT STD_LOGIC
);
END COMPONENT;
--CTRL
SIGNAL M_CTRL: STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0);
SIGNAL LSN_SHIFT: STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);
SIGNAL RSN_SHIFT: STD_LOGIC_VECTOR(CTRL_WIDTH-1 DOWNTO 0);
SIGNAL CTRL_EN: STD_LOGIC;
--LSN
SIGNAL LSN_OUT: STD_LOGIC_VECTOR(DATA_WIDTH-2 DOWNTO 0);
--RSN
SIGNAL RSN_OUT: STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);
--MN_OUT
SIGNAL OUT_REG: STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);
SIGNAL DATA_OUT_REG:STD_LOGIC_VECTOR(DATA_WIDTH-1 DOWNTO 0);
--VALID_REG
SIGNAL VALID_REG: STD_LOGIC;
begin
CTRL_GE:CTRL
GENERIC MAP(
DATA_WIDTH => DATA_WIDTH,
CTRL_WIDTH => CTRL_WIDTH
)
PORT MAP(
CLK => CLK,
RST_N => RST_N,
EN => EN,
SHIFT_NUM => SHIFT_NUM,
M => M_CTRL,
LSN_SHIFT => LSN_SHIFT,
RSN_SHIFT => RSN_SHIFT,
VALID => CTRL_EN
);
LSN:LSN_9x8_network
GENERIC MAP(
DATA_WIDTH => DATA_WIDTH,
CTRL_WIDTH => CTRL_WIDTH
)
PORT MAP(
DATA_IN => DATA_IN,
LSN_CTRL => LSN_SHIFT,
DATA_OUT => LSN_OUT
);
RSN:RSN_9x9_network
GENERIC MAP(
DATA_WIDTH => DATA_WIDTH,
CTRL_WIDTH => CTRL_WIDTH
)
PORT MAP(
DATA_IN => DATA_IN,
RSN_CTRL => RSN_SHIFT,
DATA_OUT => RSN_OUT
);
MN:MN_9x9_network
GENERIC MAP(
DATA_WIDTH => DATA_WIDTH
)
PORT MAP(
LSN_DATA_IN=> LSN_OUT,
RSN_DATA_IN=> RSN_OUT,
M_CTRL => M_CTRL,
DATA_OUT => OUT_REG
);
OUT_GE:PROCESS(CLK,RST_N)
BEGIN
IF RST_N='0'THEN
DATA_OUT_REG<=(OTHERS=>'0');
ELSIF RISING_EDGE(CLK)THEN
IF CTRL_EN='1'THEN
DATA_OUT_REG<=OUT_REG;
END IF;
END IF;
END PROCESS;
DATA_OUT<=DATA_OUT_REG;
VALID_REG_GE:PROCESS(CLK,RST_N)
BEGIN
IF RST_N='0'THEN
VALID_REG<='0';
ELSIF RISING_EDGE(CLK)THEN
IF CTRL_EN='1'THEN
VALID_REG<='1';
ELSE
VALID_REG<='0';
END IF;
END IF;
END PROCESS;
VALID<=VALID_REG;
end Behavioral;
使用时钟CLK和复位信号RST_N控制时序,并加入输入输出使能信号。最后实现的结果如下,可以看到左循环移位1~9的结果均正确。