动手学ROS2
git clone https://ghproxy.com/https://github.com/ros2/cartographer.git -b ros2
git clone https://ghproxy.com/https://github.com/ros2/cartographer_ros.git -b ros2
wget http://fishros.com/install -O fishros && . fishros
选择编号3,然后运行
rodepc update
colcon build --packages-up-to cartographer_ros
ros2 pkg list | grep cartographer
成功显示:
cartographer_ros
cartographer_ros_msgs
------------------------------------------------------------------------------------------------------------------------------
sudo apt install ros-humble-cartographer -y
sudo apt install ros-humble-cartographer-ros -y
创建一个.lua
文件,根据情况配置
include "map_builder.lua"
include "trajectory_builder.lua"
options = {
map_builder = MAP_BUILDER,
trajectory_builder = TRAJECTORY_BUILDER,
map_frame = "map",
tracking_frame = "base_link",
-- base_link改为odom,发布map到odom之间的位姿态
published_frame = "odom",
odom_frame = "odom",
-- true改为false,不用提供里程计数据
provide_odom_frame = false,
-- false改为true,仅发布2D位资
publish_frame_projected_to_2d = true,
-- false改为true,使用里程计数据
use_odometry = true,
use_nav_sat = false,
use_landmarks = false,
-- 0改为1,使用一个雷达
num_laser_scans = 1,
-- 1改为0,不使用多波雷达
num_multi_echo_laser_scans = 0,
-- 10改为1,1/1=1等于不分割
num_subdivisions_per_laser_scan = 1,
num_point_clouds = 0,
lookup_transform_timeout_sec = 0.2,
submap_publish_period_sec = 0.3,
pose_publish_period_sec = 5e-3,
trajectory_publish_period_sec = 30e-3,
rangefinder_sampling_ratio = 1.,
odometry_sampling_ratio = 1.,
fixed_frame_pose_sampling_ratio = 1.,
imu_sampling_ratio = 1.,
landmarks_sampling_ratio = 1.,
}
-- false改为true,启动2D SLAM
MAP_BUILDER.use_trajectory_builder_2d = true
-- 0改成0.10,比机器人半径小的都忽略
TRAJECTORY_BUILDER_2D.min_range = 0.10
-- 30改成3.5,限制在雷达最大扫描范围内,越小一般越精确些
TRAJECTORY_BUILDER_2D.max_range = 3.5
-- 5改成3,传感器数据超出有效范围最大值
TRAJECTORY_BUILDER_2D.missing_data_ray_length = 3.
-- true改成false,不使用IMU数据,大家可以开启,然后对比下效果
TRAJECTORY_BUILDER_2D.use_imu_data = false
-- false改成true,使用实时回环检测来进行前端的扫描匹配
TRAJECTORY_BUILDER_2D.use_online_correlative_scan_matching = true
-- 1.0改成0.1,提高对运动的敏感度
TRAJECTORY_BUILDER_2D.motion_filter.max_angle_radians = math.rad(0.1)
-- 0.55改成0.65,Fast csm的最低分数,高于此分数才进行优化。
POSE_GRAPH.constraint_builder.min_score = 0.65
--0.6改成0.7,全局定位最小分数,低于此分数则认为目前全局定位不准确
POSE_GRAPH.constraint_builder.global_localization_min_score = 0.7
-- 设置0可关闭全局SLAM
-- POSE_GRAPH.optimize_every_n_nodes = 0
return options
import os
from launch import LaunchDescription
from launch.substitutions import LaunchConfiguration
from launch_ros.actions import Node
from launch_ros.substitutions import FindPackageShare
def generate_launch_description():
# 定位到功能包的地址
pkg_share = FindPackageShare(package='fishbot_cartographer').find('fishbot_cartographer')
#=====================运行节点需要的配置=======================================================================
# 是否使用仿真时间,我们用gazebo,这里设置成true
use_sim_time = LaunchConfiguration('use_sim_time', default='true')
# 地图的分辨率
resolution = LaunchConfiguration('resolution', default='0.05')
# 地图的发布周期
publish_period_sec = LaunchConfiguration('publish_period_sec', default='1.0')
# 配置文件夹路径
configuration_directory = LaunchConfiguration('configuration_directory',default= os.path.join(pkg_share, 'config') )
# 配置文件
configuration_basename = LaunchConfiguration('configuration_basename', default='fishbot_2d.lua')
rviz_config_dir = os.path.join(pkg_share, 'config')+"/cartographer.rviz"
print(f"rviz config in {rviz_config_dir}")
#=====================声明三个节点,cartographer/occupancy_grid_node/rviz_node=================================
cartographer_node = Node(
package='cartographer_ros',
executable='cartographer_node',
name='cartographer_node',
output='screen',
parameters=[{'use_sim_time': use_sim_time}],
arguments=['-configuration_directory', configuration_directory,
'-configuration_basename', configuration_basename])
cartographer_occupancy_grid_node = Node(
package='cartographer_ros',
executable='cartographer_occupancy_grid_node',
name='cartographer_occupancy_grid_node',
output='screen',
parameters=[{'use_sim_time': use_sim_time}],
arguments=['-resolution', resolution, '-publish_period_sec', publish_period_sec])
rviz_node = Node(
package='rviz2',
executable='rviz2',
name='rviz2',
arguments=['-d', rviz_config_dir],
parameters=[{'use_sim_time': use_sim_time}],
output='screen')
#===============================================定义启动文件========================================================
ld = LaunchDescription()
ld.add_action(cartographer_node)
ld.add_action(cartographer_occupancy_grid_node)
ld.add_action(rviz_node)
return ld
安装保存地图软件
sudo apt install ros-humble-nav2-map-server
保存地图命令
ros2 run nav2_map_server map_saver_cli -t /map -f mapname # -t 订阅的话题名,-f 保存地图名