Given an integer n, return a list of all possible full binary trees with n nodes. Each node of each tree in the answer must have Node.val == 0.
Each element of the answer is the root node of one possible tree. You may return the final list of trees in any order.
A full binary tree is a binary tree where each node has exactly 0 or 2 children.
Example 1:
Input: n = 7
Output: [[0,0,0,null,null,0,0,null,null,0,0],[0,0,0,null,null,0,0,0,0],[0,0,0,0,0,0,0],[0,0,0,0,0,null,null,null,null,0,0],[0,0,0,0,0,null,null,0,0]]
Example 2:
Input: n = 3
Output: [[0,0,0]]
Constraints:
1 <= n <= 20
解法1:对数目为n的子树,左右子树总和为n-1,左右子树各递归,数目分别为i和n-1-i,i=1…n-2,leftRes和rightRes就包含了各种可能的左子树和右子树的root。然后leftRes和rightRes的结果两两配对,加上一个root就可以构成一个结果。
注意:为什么i=1…n-2,i能不能为0或n-1呢? 如果i=0,那么leftRes为空,如果i=n-1,那么rightRes为空。这个就不是full binary tree了。而且,TreeNode *root = new TreeNode(0); 也不会被执行到。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<TreeNode*> allPossibleFBT(int n) {
helper(n);
return mp[n];
}
private:
map<int, vector<TreeNode *> > mp;
vector<TreeNode *> helper(int n) {
//if (n == 0) return {NULL}; //这行可以不要。
if (mp.find(n) != mp.end()) return mp[n];
if (n == 1) {
mp[1] = {new TreeNode(0)};
return mp[1];
}
vector<TreeNode *> res;
for (int i = 1; i < n - 1; i++) { //可以优化成for (int i = 1; i < n - 1; i += 2) {
vector<TreeNode *> leftRes = helper(i);
vector<TreeNode *> RightRes = helper(n - 1 - i);
for (auto left : leftRes) {
for (auto right : RightRes) {
TreeNode *root = new TreeNode(0);
root->left = left;
root->right = right;
res.push_back(root);
}
}
}
mp[n] = res;
return res;
}
};
注意:
for (int i = 1; i < n - 1; i++)可以优化成
for (int i = 1; i < n - 1; i += 2)
因为各个子树的节点数目都是奇数。