Qt应用软件【数据篇】数据校验crc8、crc16、crc32

文章目录

  • 1.数据校验的重要性
  • 2.为什么数据校验如此重要
  • 3.CRC校验的基本原理
  • 4.多项式介绍
  • 5.数据校验长度
  • 6.crc8 crc16 crc32校验码的使用场景和特点
  • 7.crc计算方式函数封装
  • 8.crc 查表方式

1.数据校验的重要性

在Qt上位机开发中,数据校验是一个核心环节,尤其在进行硬件通信和数据传输时更是不可或缺。数据校验确保了传输数据的完整性和正确性,降低了由于通信错误导致的问题。对于任何依赖于数据准确性的应用程序来说,实现有效的数据校验机制是至关重要的。

2.为什么数据校验如此重要

  • 确保数据完整性:在数据从一个系统传输到另一个系统的过程中,可能会因为各种原因(如电磁干扰、硬件故障、网络问题等)导致数据损坏。数据校验帮助检测这些问题,确保接收的数据与发送的数据一致。
  • 提高通信可靠性:在复杂的通信环境中,数据包可能会丢失或错误。使用数据校验方法可以识别这些错误,有时甚至能够纠正它们,从而提高整体通信的可靠性。
  • 避免错误传播:在多个系统或组件协作的情况下,一个系统的错误数据可以迅速传播到整个网络。通过在各个节点实施数据校验,可以局部化错误,防止其扩散。
  • 满足安全和合规要求:某些应用领域(如医疗、金融、工业控制等)对数据的准确性有严格要求。数据校验是满足这些要求的关键步骤。
  • 提升用户信任和体验:在最终用户应用中,数据的准确性直接影响用户体验和对产品的信任。有效的数据校验可以减少错误和提高用户满意度

3.CRC校验的基本原理

循环冗余校验(Cyclic Redundancy Check,CRC)是一种用于检测数据传输或存储过程中错误的常用技术。CRC校验通过特定的算法生成一个短的校验码,该校验码随原始数据一起发送或存储。接收方或读取方使用相同的算法对收到的数据进行校验,以确定数据是否在传输或存储过程中遭到破坏。

工作原理:

  1. 多项式表示:CRC校验基于多项式运算。数据和校验码都可以用多项式来表示。例如,在CRC-16中,一个16位的校验码可以表示为一个16次的多项式。
  2. 生成多项式:CRC算法的核心是一个预定义的“生成多项式”,这个多项式决定了CRC的计算方式。例如,CRC16-CCITT使用的生成多项式是x^16 + x^12 + x^5 + 1
生成多项式 (CRC16-CCITT): x^16 + x^12 + x^5 + 1
表示为二进制: 1 0001 0000 0010 0001 (省略了最高位的1)

在这个表示中,多项式的每个项都对应一个二进制位。( x^{16} ) 表示为最左侧的1(实际计算时通常省略),( x^{12} ) 表示为第五位的1,( x^5 ) 表示为第十二位的1,最后的常数项1表示为最右侧的1。

  1. 计算过程
    • 将原始数据表示为一个长多项式。
    • 将这个多项式乘以x^n,其中n是生成多项式的次数,目的是为原始数据多项式添加n个零位。
    • 使用生成多项式对结果进行除法运算。
    • 取余数作为CRC校验码。
  2. 校验过程
    • 接收方(或读取方)使用相同的生成多项式对包含校验码的数据进行除法运算。
    • 如果余数为零,则认为数据在传输或存储过程中没有错误;如果余数非零,则数据可能已损坏。

4.多项式介绍

在循环冗余校验(CRC)计算中,多项式是核心的一部分,它决定了CRC算法的特性和错误检测能力。CRC8、CRC16、和CRC32使用不同的多项式。以下是这三种CRC类型常用的多项式介绍:

CRC8的多项式

  • 常见多项式0x07(二进制:00000111)
  • 应用:这是CRC8的一个标准多项式,广泛应用于各种简单的通信协议。
  • 特点:这个多项式适用于短消息和小数据量的校验,提供基本的错误检测能力。

CRC16的多项式

  • 常见多项式
    • CRC16-CCITT:0x1021(二进制:0001 0000 0010 0001)
    • CRC16-MODBUS:0x8005(二进制:1000 0000 0000 0101)
  • 应用:CRC16-CCITT常用于通信协议如X.25、Bluetooth,而CRC16-MODBUS常用于工业通信协议。
  • 特点:这些多项式适用于中等长度的数据,提供较好的错误检测能力。不同的多项式适用于不同的应用场景。

CRC32的多项式

  • 常见多项式0x04C11DB7(IEEE 802.3标准,二进制:0000 0100 1100 0001 0001 1101 1011 0111)
  • 应用:这是最常用的CRC32多项式,广泛应用于例如Ethernet、ZIP文件的大数据量校验。
  • 特点:这个多项式提供了高级别的错误检测能力,适合大数据量的校验。

5.数据校验长度

CRC校验的数据长度能力并不是由CRC类型(如CRC8、CRC16、CRC32)本身直接决定的,而是由所选择的多项式和校验码长度决定的。校验码长度决定了理论上的最大错误检测能力,但实际上,CRC算法对于特定长度的数据有最优的效果。以下是对每种CRC类型支持校验数据长度的一般指导:

CRC8

  • 校验码长度:8位
  • 支持数据长度:理论上,CRC8适用于最大长度为2^8-1 = 255位(约31字节)的数据。但实际应用中,由于其较低的错误检测能力,更适合用于校验较短的数据或消息,通常小于31字节。

CRC16

  • 校验码长度:16位
  • 支持数据长度:理论上,CRC16适用于最大长度为2^16-1 = 65,535位(约8 KB)的数据。然而,在实际应用中,通常用于校验小于这个长度的数据,以获得更高的错误检测效率。

CRC32

  • 校验码长度:32位
  • 支持数据长度:理论上,CRC32适用于最大长度为2^32-1位的数据。在实践中,CRC32通常用于校验大文件或数据包,长度可以达到几KB到几MB,甚至更大。

总的来说,CRC的有效性取决于数据的长度和所使用的多项式。在选择CRC类型时,应根据数据的长度和错误检测需求进行考虑。

  • 较短的数据通常适用于CRC8
  • 中等长度的数据适用于CRC16
  • 较长的数据则更适合使用CRC32。

此外,CRC算法对于某些特定模式的错误(如奇偶错误、突发错误)具有固有的检测能力,这也应在选择适当的CRC类型时予以考虑。

6.crc8 crc16 crc32校验码的使用场景和特点

CRC8、CRC16、和CRC32是循环冗余校验(CRC)的常见类型,它们在不同的使用场景中有着各自的特点和优势。以下是这三种CRC校验码的使用场景和特点:

CRC8

  • 使用场景
    • 小数据量的通信协议,如某些类型的传感器数据传输。
    • 适用于需要低开销和较快速度的场合。
  • 特点
    • 提供8位长的校验码,相对较小的校验码大小。
    • 适合用于校验较短的数据或消息。
    • 错误检测能力有限,主要用于检测小范围的随机错误。

CRC16

  • 使用场景
    • 工业通信协议,如Modbus、X.25、USB、Bluetooth等。
    • 适用于中等长度的数据传输和存储。
  • 特点
    • 提供16位长的校验码,比CRC8提供更高的错误检测能力。
    • 适合用于中等长度的数据校验。
    • 广泛用于工业和网络通信领域,具有良好的错误检测和部分错误纠正能力。

CRC32

  • 使用场景
    • 大数据量的文件传输和存储,如网络数据包校验(例如Ethernet、ZIP文件)。
    • 在需要高级别错误检测能力的场景中使用。
  • 特点
    • 提供32位长的校验码,提供高级别的错误检测能力。
    • 适合用于大数据量的校验,如文件校验和网络数据包。
    • 在数据完整性方面非常可靠,但计算复杂性和资源消耗高于CRC8和CRC16。

7.crc计算方式函数封装

quint32 calculateCrc32Direct(const QByteArray &data, quint32 poly = 0xEDB88320) {
    quint32 crc = 0xFFFFFFFF;
    for (quint8 byte : data) {
        crc ^= byte;
        for (int i = 0; i < 8; ++i) {
            if (crc & 1)
                crc = (crc >> 1) ^ poly;
            else
                crc >>= 1;
        }
    }
    return ~crc;
}

quint16 calculateCrc16Direct(const QByteArray &data, quint16 poly = 0x1021) {
    quint16 crc = 0xFFFF;
    for (quint8 byte : data) {
        crc ^= static_cast(byte << 8);
        for (int i = 0; i < 8; ++i) {
            if (crc & 0x8000)
                crc = (crc << 1) ^ poly;
            else
                crc <<= 1;
        }
    }
    return crc;
}

quint8 calculateCrc8Direct(const QByteArray &data, quint8 poly = 0x07) {
    quint8 crc = 0xFF;
    for (quint8 byte : data) {
        crc ^= byte;
        for (int i = 0; i < 8; ++i) {
            if (crc & 0x80)
                crc = (crc << 1) ^ poly;
            else
                crc <<= 1;
        }
    }
    return crc;
}

8.crc 查表方式

生成一次表即可,效率高

//crc8
quint8 crc8Table[256];
void generateCrc8Table(quint8 poly = 0x07) {
    for (int i = 0; i < 256; ++i) {
        quint8 crc = i;
        for (int j = 0; j < 8; j++) {
            if (crc & 0x80)
                crc = (crc << 1) ^ poly;
            else
                crc <<= 1;
        }
        crc8Table[i] = crc;
    }
}

quint8 calculateCrc8(const QByteArray &data) {
    quint8 crc = 0xFF;
    for (quint8 byte : data) {
        crc = crc8Table[(crc ^ byte) & 0xFF];
    }
    return crc;
}

//crc16
quint16 crc16Table[256];

void generateCrc16Table(quint16 poly = 0x1021) {
    for (int i = 0; i < 256; ++i) {
        quint16 crc = static_cast(i << 8);
        for (int j = 0; j < 8; ++j) {
            if (crc & 0x8000)
                crc = (crc << 1) ^ poly;
            else
                crc <<= 1;
        }
        crc16Table[i] = crc;
    }
}

quint16 calculateCrc16(const QByteArray &data) {
    quint16 crc = 0xFFFF;
    for (quint8 byte : data) {
        crc = (crc << 8) ^ crc16Table[(crc >> 8) ^ byte];
    }
    return crc;
}

//crc32
quint32 crc32Table[256];

void generateCrc32Table(quint32 poly = 0xEDB88320) {
    for (quint32 i = 0; i < 256; ++i) {
        quint32 crc = i;
        for (int j = 0; j < 8; ++j) {
            if (crc & 1)
                crc = (crc >> 1) ^ poly;
            else
                crc >>= 1;
        }
        crc32Table[i] = crc;
    }
}

quint32 calculateCrc32(const QByteArray &data) {
    quint32 crc = 0xFFFFFFFF;
    for (quint8 byte : data) {
        crc = crc32Table[(crc ^ byte) & 0xFF] ^ (crc >> 8);
    }
    return ~crc;
}

  • main.cpp
generateCrc8Table();
generateCrc16Table();
generateCrc32Table();

QByteArray data = ...; // 需要校验的数据

// 计算CRC8
quint8 crc8 = calculateCrc8(data);

// 计算CRC16
quint16 crc16 = calculateCrc16(data);

// 计算CRC32
quint32 crc32 = calculateCrc32(data);

  • 查表方式
const quint8 crc8Table[256] = {
    0x00, 0x07, 0x0E, 0x09, 0x1C, 0x1B, 0x12, 0x15, 0x38, 0x3F, 0x36, 0x31, 0x24, 0x23, 0x2A, 0x2D,
    0x70, 0x77, 0x7E, 0x79, 0x6C, 0x6B, 0x62, 0x65, 0x48, 0x4F, 0x46, 0x41, 0x54, 0x53, 0x5A, 0x5D,
    0xE0, 0xE7, 0xEE, 0xE9, 0xFC, 0xFB, 0xF2, 0xF5, 0xD8, 0xDF, 0xD6, 0xD1, 0xC4, 0xC3, 0xCA, 0xCD,
    0x90, 0x97, 0x9E, 0x99, 0x8C, 0x8B, 0x82, 0x85, 0xA8, 0xAF, 0xA6, 0xA1, 0xB4, 0xB3, 0xBA, 0xBD,
    0xC7, 0xC0, 0xC9, 0xCE, 0xDB, 0xDC, 0xD5, 0xD2, 0xFF, 0xF8, 0xF1, 0xF6, 0xE3, 0xE4, 0xED, 0xEA,
    0xB7, 0xB0, 0xB9, 0xBE, 0xAB, 0xAC, 0xA5, 0xA2, 0x8F, 0x88, 0x81, 0x86, 0x93, 0x94, 0x9D, 0x9A,
    0x27, 0x20, 0x29, 0x2E, 0x3B, 0x3C, 0x35, 0x32, 0x1F, 0x18, 0x11, 0x16, 0x03, 0x04, 0x0D, 0x0A,
    0x57, 0x50, 0x59, 0x5E, 0x4B, 0x4C, 0x45, 0x42, 0x6F, 0x68, 0x61, 0x66, 0x73, 0x74, 0x7D, 0x7A,
    0x89, 0x8E, 0x87, 0x80, 0x95, 0x92, 0x9B, 0x9C, 0xB1, 0xB6, 0xBF, 0xB8, 0xAD, 0xAA, 0xA3, 0xA4,
    0xF9, 0xFE, 0xF7, 0xF0, 0xE5, 0xE2, 0xEB, 0xEC, 0xC1, 0xC6, 0xCF, 0xC8, 0xDD, 0xDA, 0xD3, 0xD4,
    0x69, 0x6E, 0x67, 0x60, 0x75, 0x72, 0x7B, 0x7C, 0x51, 0x56, 0x5F, 0x58, 0x4D, 0x4A, 0x43, 0x44,
    0x19, 0x1E, 0x17, 0x10, 0x05, 0x02, 0x0B, 0x0C, 0x21, 0x26, 0x2F, 0x28, 0x3D, 0x3A, 0x33, 0x34,
    0x4E, 0x49, 0x40, 0x47, 0x52, 0x55, 0x5C, 0x5B, 0x76, 0x71, 0x78, 0x7F, 0x6A, 0x6D, 0x64, 0x63,
    0x3E, 0x39, 0x30, 0x37, 0x22, 0x25, 0x2C, 0x2B, 0x06, 0x01, 0x08, 0x0F, 0x1A, 0x1D, 0x14, 0x13,
    0xAE, 0xA9, 0xA0, 0xA7, 0xB2, 0xB5, 0xBC, 0xBB, 0x96, 0x91, 0x98, 0x9F, 0x8A, 0x8D, 0x84, 0x83,
    0xDE, 0xD9, 0xD0, 0xD7, 0xC2, 0xC5, 0xCC, 0xCB, 0xE6, 0xE1, 0xE8, 0xEF, 0xFA, 0xFD, 0xF4, 0xF3
};
quint8 calculateCrc8(const QByteArray &data) {
    quint8 crc = 0xFF;
    for (quint8 byte : data) {
        crc = crc8Table[(crc ^ byte) & 0xFF];
    }
    return crc;
}

const quint16 crc16Table[256] = {
    0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7, 0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF,
    0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6, 0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE,
    0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485, 0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D,
    0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4, 0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC,
    0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823, 0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B,
    0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12, 0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A,
    0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41, 0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49,
    0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70, 0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78,
    0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F, 0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067,
    0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E, 0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,
    0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D, 0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
    0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C, 0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,
    0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB, 0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3,
    0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A, 0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92,
    0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9, 0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1,
    0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8, 0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0
};
quint16 calculateCrc16(const QByteArray &data) {
    quint16 crc = 0xFFFF;
    for (quint8 byte : data) {
        crc = (crc << 8) ^ crc16Table[(crc >> 8) ^ byte];
    }
    return crc;
}
  • 实现crc的开源项目
    https://github.com/ETLCPP/crc-table-generator

  • 查表网站
    https://crccalc.com/

你可能感兴趣的:(Qt上位机,qt,C++,C,上位机)